T cell recognition of major histocompatibility complex class II complexes with invariant chain processing intermediates. 1995

S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
Department of Immunology, University of Washington, Seattle 98195, USA.

Peptides from the lumenal portion of invariant chain (Ii) spanning residues 80-106 (class II-associated Ii peptide [CLIP]) are found in association with several mouse and human major histocompatibility complex (MHC) class II allelic variants in wild-type and presentation-deficient mutant cells. The ready detection of these complexes suggests that such an intermediate is essential to the MHC class II processing pathway. In this study, we demonstrate that T cells recognize CLIP/MHC class II complexes on the surface of normal and mutant cells in a manner indistinguishable from that of nominal antigenic peptides. Surprisingly, T cell hybrids specific for human CLIP bound to murine MHC class II molecule I-Ab and a new monoclonal antibody 30-2 with the same specificity, recognize two independent epitopes expressed on this peptide/class II complex. T cell recognition is dependent on a Gln residue (position 100) in CLIP, whereas the 30-2 antibody recognizes a Lys residue-at position 90. These two residues flank the 91-99 sequence that is conserved among human, mouse, and rat Ii, potentially representing an MHC class II-binding site. Our results suggest that the COOH-terminal portion of CLIP that includes TCR contact residue Gln 100 binds in the groove of I-Ab molecule. Moreover, both T cells and the antibody recognize I-Ab complexed with larger Ii processing intermediates such as the approximately 12-kD small leupeptin-induced protein (SLIP) fragments. Thus, SLIP fragments contain a CLIP region bound to MHC class II molecule in a conformation identical to that of a free CLIP peptide. Finally, our data suggest that SLIP/MHC class II complexes are precursors of CLIP/MHC class II complexes.

UI MeSH Term Description Entries
D007976 Leupeptins A group of acylated oligopeptides produced by Actinomycetes that function as protease inhibitors. They have been known to inhibit to varying degrees trypsin, plasmin, KALLIKREINS, papain and the cathepsins.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium

Related Publications

S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
November 2005, FEBS letters,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
June 1995, The Journal of cell biology,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
September 1999, The Journal of biological chemistry,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
August 1992, European journal of immunology,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
July 1997, The Journal of biological chemistry,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
April 1990, The Journal of biological chemistry,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
S Morkowski, and A W Goldrath, and S Eastman, and L Ramachandra, and D C Freed, and P Whiteley, and Rudensky AYu
February 1996, European journal of immunology,
Copied contents to your clipboard!