Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. 1995

S J Odelberg, and R B Weiss, and A Hata, and R White
Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City 84112, USA.

Recombinant DNA molecules are often generated during the polymerase chain reaction (PCR) when partially homologous templates are available [e.g., see Pääbo et al. (1990) J. Biol. Chem. 265, 4718-4721]. It has been suggested that these recombinant molecules are a consequence of truncated extension products annealing to partially homologous templates on subsequent PCR cycles. However, we demonstrate here that recombinants can be generated during a single round of primer extension in the absence of subsequent heat denaturation, indicating that template-switching produces some of these recombinant molecules. Two types of template-switches were observed: (i) switches to pre-existing templates and (ii) switches to the complementary nascent strand. Recombination is reduced several fold when the complementary template strands are physically separated by attachment to streptavidin magnetic beads. This result supports the hypothesis that either the polymerase or at least one of the two extending strands switches templates during DNA synthesis and that interaction between the complementary template strands is necessary for efficient template-switching.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

S J Odelberg, and R B Weiss, and A Hata, and R White
July 1990, Nucleic acids research,
S J Odelberg, and R B Weiss, and A Hata, and R White
August 1988, Biochemistry,
S J Odelberg, and R B Weiss, and A Hata, and R White
August 2014, Journal of molecular biology,
S J Odelberg, and R B Weiss, and A Hata, and R White
October 2003, Nucleic acids research,
S J Odelberg, and R B Weiss, and A Hata, and R White
December 2010, Proceedings of the National Academy of Sciences of the United States of America,
S J Odelberg, and R B Weiss, and A Hata, and R White
October 1989, Nucleic acids research,
S J Odelberg, and R B Weiss, and A Hata, and R White
August 1995, Nature,
S J Odelberg, and R B Weiss, and A Hata, and R White
January 2014, Advances in protein chemistry and structural biology,
S J Odelberg, and R B Weiss, and A Hata, and R White
April 2001, Mutation research,
Copied contents to your clipboard!