Proton transfer by histidine 67 in site-directed mutants of human carbonic anhydrase III. 1995

X Ren, and C Tu, and P J Laipis, and D N Silverman
Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville 32610-0267, USA.

The ability of a histidine residue at position 67 in human carbonic anhydrase III to transfer protons in the catalytic pathway for the hydration of CO2 was investigated for a series of site-specific mutants. Wild-type carbonic anhydrase III has an arginine at this position with the C alpha of residue 67 about 9.4 A from the zinc. The active-site cavity contains no other residues capable of facile proton transfer. Rate constants for proton transfer from His 67 to the zinc-bound hydroxide were determined from the rate constants for the exchange of 18O between CO2 and water measured by mass spectrometry. A range of values for the pKa of zinc-bound water was achieved by replacement of phenylalanine with leucine and aspartate at position 198 adjacent to the zinc. Application of Marcus rate theory showed that intramolecular proton transfer involving His 67 had an intrinsic energy barrier of 1.3 +/- 0.3 kcal/mol and a thermodynamic work function for a preceding unfavorable equilibrium of 10.9 +/- 0.1 kcal/mol. We previously showed that proton transfer from histidine 64 in carbonic anhydrase III could be described by Marcus rate theory [Silverman, D. N., Tu, C. K., Chen, X., Tanhauser, S. M., Kresge, A. J., & Laipis, P. J. (1993) Biochemistry 32, 10757-10762]. In comparison, proton transfer from His 67 must overcome a more unfavorable preceding equilibrium (a larger work function) that probably represents an energy requirement for proper alignment of donor and acceptor groups plus the intervening hydrogen-bonded water. Once this alignment is achieved, the intrinsic energy barrier appears the same for His 67 or His 64.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002256 Carbonic Anhydrases A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1. Carbonate Dehydratase,Carbonic Anhydrase,Anhydrases, Carbonic,Dehydratase, Carbonate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

X Ren, and C Tu, and P J Laipis, and D N Silverman
July 1990, Biochemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
October 1991, European journal of biochemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
June 1998, Biophysical journal,
X Ren, and C Tu, and P J Laipis, and D N Silverman
April 2011, Journal of the American Chemical Society,
X Ren, and C Tu, and P J Laipis, and D N Silverman
October 1993, Biochemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
February 1991, Biochemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
August 2005, Biochemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
March 2007, The Journal of biological chemistry,
X Ren, and C Tu, and P J Laipis, and D N Silverman
January 1999, Archives of biochemistry and biophysics,
Copied contents to your clipboard!