Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. 1994

J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain.

The product of the segment polarity gene patched is a transmembrane protein involved in the cell communication processes that establish polarity within the embryonic segments of Drosophila. Monoclonal antibodies have been raised against the patched protein, and by immunoelectron microscopy part of the patched staining is found associated with discrete regions of the lateral plasma membrane of the embryonic epidermal cells. Using a mutation affecting endocytosis (shibire) we find that patched is a membrane-bound protein, which is internalized by endocytosis, and that the preferential sites of accumulation resemble the described localization of the cell-cell adhesive junctions of the epidermal cells. patched partially co-localizes with the wingless protein in the wingless-expressing and nearby cells, in structures that seem to be endocytic vesicles. These data suggest the interaction of patched protein with elements of the reception complex of wingless, as a way to control the wingless expression.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017344 Genes, Insect The functional hereditary units of INSECTS. Insect Genes,Gene, Insect,Insect Gene
D051155 Wnt1 Protein A proto-oncogene protein and member of the Wnt family of proteins. It is expressed in the caudal MIDBRAIN and is essential for proper development of the entire mid-/hindbrain region. Proto-Oncogene Protein Int-1,Proto-Oncogene Protein Wnt-1,Wnt1 Proto-Oncogene Protein,Wnt-1 Protein,c-int Protein,Int-1, Proto-Oncogene Protein,Proto Oncogene Protein Int 1,Proto Oncogene Protein Wnt 1,Proto-Oncogene Protein, Wnt1,Wnt 1 Protein,Wnt-1, Proto-Oncogene Protein,Wnt1 Proto Oncogene Protein

Related Publications

J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
July 1994, Developmental biology,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
January 1993, Development (Cambridge, England). Supplement,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
January 1994, The EMBO journal,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
June 1995, Developmental biology,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
September 1990, Development (Cambridge, England),
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
October 1989, Nature,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
September 1991, Nature,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
December 1989, Development (Cambridge, England),
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
December 1993, The EMBO journal,
J Capdevila, and F Pariente, and J Sampedro, and J L Alonso, and I Guerrero
June 1987, The EMBO journal,
Copied contents to your clipboard!