Characterization of a human perinatal myosin heavy-chain transcript. 1995

E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
Laboratoire d'Histologie-Embryologie, Faculté de Médecine Cochin Port Royal, Université René Descartes, Paris, France.

Using a monoclonal antibody specific to the neonatal myosin heavy chain, we have cloned the full-length heavy chain cDNA from an 18-week human fetal cDNA library. Ribonuclease protection assays were used to survey a human muscle collection ranging from 11 weeks gestation to 16 years. Expression of the RNA encoded by this cDNA was observed at 20 and 21 weeks gestation and at 2 days after birth. No expression was observed at 13.5 weeks, before 2 years, at 2 years, or after 2 years gestation. Due to the timing of its expression, this cDNA appears to represent of the human fetal myosin heavy chain. Sequencing of the entire 6010 bases showed high similarity to the rat perinatal myosin heavy chain [Periasamy, M., Wieczorek, D. F. & Nadal-Ginard, B. (1984) J. Biol. Chem. 21, 13,573-13,578]. However, moderate divergence was observed when compared to a previously described human perinatal myosin heavy chain [Karsch-Mizrachi, I., Feghali, R., Shows, T. B. & Leinwand, L. A. (1990) Gene 89, 289-294; Feghali, R. & Leinwand, L. A. (1989) J. Cell Biol. 108, 1791-1797]. Restriction fragment-length polymorphism analyses of sites in both the S1 and rod domains showed the presence of this fetal myosin heavy chain sequence in all 27 genomic samples examined. Restriction fragment-length polymorphism analysis failed to find the previously described perinatal isoform in any sample.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
May 1989, The Journal of cell biology,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
December 2004, The New England journal of medicine,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
December 2004, The New England journal of medicine,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
December 2004, The New England journal of medicine,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
May 1990, Gene,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
June 1983, Proceedings of the National Academy of Sciences of the United States of America,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
November 1984, The Journal of biological chemistry,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
January 1983, The Journal of biological chemistry,
E H Jullian, and A M Kelly, and A J Pompidou, and R Hoffman, and S Schiaffino, and H H Stedman, and N A Rubinstein
January 1983, Human genetics,
Copied contents to your clipboard!