Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. 1995

H G Sahl, and R W Jack, and G Bierbaum
Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Germany.

Lantibiotics are biologically active peptides which contain the thioether amino acid lanthionine as well as several other modified amino acids. They can be broadly divided into two groups on the basis of their structures: type-A lantibiotics are elongated, amphiphilic peptides, while type-B lantibiotics are compact and globular. In the last decade there has been a marked increase in research interest in these peptides due both to the novel biosynthetic mechanisms by which they are produced, as well as to their potential applications. Lantibiotics are synthesised on the ribosome as a prepeptide which undergoes several post-translational modification events, including dehydration of specific hydroxyl amino acids to form dehydroamino acids, addition of neighbouring sulfhydryl groups to form thioethers and, in specific cases, other modifications such as introduction of D-alanine residues from L-serine, formation of lysinoalanine bridges, formation of novel N-terminal blocking groups and oxidative decarboxylation of a C-terminal cysteine. The genetic elements responsible for these specific modification reactions encode unique enzymes with hitherto unknown reaction mechanisms. Production of these peptides also requires accessory proteins including processing proteases, translocators of the ATP-binding cassette transporter family, regulatory proteins and dedicated producer self-protection mechanisms. While the principle biological activity of most type-B lantibiotics appears to be directed at the inhibition of enzyme functions, the type-A lantibiotics kill bacterial cells by forming pores in the cytoplasmic membrane.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs

Related Publications

H G Sahl, and R W Jack, and G Bierbaum
February 1996, Antonie van Leeuwenhoek,
H G Sahl, and R W Jack, and G Bierbaum
October 2004, Current opinion in chemical biology,
H G Sahl, and R W Jack, and G Bierbaum
August 2021, Biomedicines,
H G Sahl, and R W Jack, and G Bierbaum
January 2010, Cell structure and function,
H G Sahl, and R W Jack, and G Bierbaum
May 2009, Journal of bioscience and bioengineering,
H G Sahl, and R W Jack, and G Bierbaum
January 1998, Annual review of microbiology,
H G Sahl, and R W Jack, and G Bierbaum
January 2020, Frontiers in plant science,
H G Sahl, and R W Jack, and G Bierbaum
August 2011, Journal of the American Chemical Society,
H G Sahl, and R W Jack, and G Bierbaum
February 2023, Plant cell reports,
Copied contents to your clipboard!