Preimplantation development of tetraploid mouse embryo produced by cytochalasin B. 1995

N Koizumi, and K Fukuta
National Institute of Animal Health, Ibaraki, Japan.

Tetraploid mouse embryos usually cease to develop early after implantation, though they can develop to blastocysts. To characterize the failure of development in detail, tetraploid mouse embryos at the preimplantation period were examined as to both their morphology and number of cells. The tetraploid embryos were produced by 12 hr treatment with cytochalasin B (CB) at the 2-cell stage of backcross of (C57BL/6 x C3H/He) F1 x C3H/He. The tetraploid embryos in the preimplantation period exhibited compaction at 72 hr after hCG injection and blastocyst formation at 96 hr, as well as diploid embryos, but the number of cells composing the embryos was significantly smaller than that in the diploid embryos. At the term 60-96 hr after hCG injection, mean cell cycles were 14.03 hr in the tetraploid embryos, but 12.02 hr in the diploid. When tetraploid embryos were transferred into the oviducts of pseudopregnant recipients immediately after CB treatment, the number of cells in tetraploid blastocysts was increased compared with the embryos cultured in vitro, though the number did not reach that of diploid embryos. These results suggested that compaction and blastocyst formation in preimplantation development of tetraploid embryos depended on the time after hCG injection, irrespective of the number of cells or the length of the cell cycle. The lengthening of the cell cycle in tetraploid embryos may be one of the causes of failure in postimplantation development.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011123 Polyploidy The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc. Polyploid,Polyploid Cell,Cell, Polyploid,Cells, Polyploid,Polyploid Cells,Polyploidies,Polyploids
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D004624 Embryo Transfer The transfer of mammalian embryos from an in vivo or in vitro environment to a suitable host to improve pregnancy or gestational outcome in human or animal. In human fertility treatment programs, preimplantation embryos ranging from the 4-cell stage to the blastocyst stage are transferred to the uterine cavity between 3-5 days after FERTILIZATION IN VITRO. Blastocyst Transfer,Tubal Embryo Transfer,Tubal Embryo Stage Transfer,Embryo Transfers,Transfer, Embryo,Transfers, Embryo
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal

Related Publications

N Koizumi, and K Fukuta
October 1977, Journal of embryology and experimental morphology,
N Koizumi, and K Fukuta
December 1990, Development (Cambridge, England),
N Koizumi, and K Fukuta
February 1992, American journal of obstetrics and gynecology,
N Koizumi, and K Fukuta
February 1980, Zentralblatt fur Veterinarmedizin. Reihe A,
N Koizumi, and K Fukuta
October 2020, Current opinion in genetics & development,
N Koizumi, and K Fukuta
February 1976, Journal of embryology and experimental morphology,
N Koizumi, and K Fukuta
March 1973, Nature: New biology,
N Koizumi, and K Fukuta
October 2021, Reproductive toxicology (Elmsford, N.Y.),
Copied contents to your clipboard!