Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. 1995

L Kung, and A O Hession
Department of Animal Science & Agricultural Biochemistry, University of Delaware, Newark 19717-1303.

In vitro fermentations containing a mixed culture of ruminal bacteria (ruminal fluid from a hay-fed steer), buffer, and primarily rapidly degradable substrates (starch, glucose, cellulose, cellobiose, and trypticase) were inoculated with an overnight culture of Megasphaera elsdenii B159. Triplicate flasks were either uninoculated or inoculated to obtain a final concentration of 8.7 x 10(5) and 8.7 x 10(6) colony forming units of M. elsdenii per milliliter of culture fluid. Inoculation with M. elsdenii prevented an accumulation of lactic acid and excessive drop in pH. Lactate peaked at more than 40 mM in untreated cultures. In cultures inoculated with a low dose of M. elsdenii, lactate concentration peaked at approximately 25 mM at 5 h of fermentation but decreased rapidly to less than 5 mM by 7 h of fermentation. With the addition of the high dose of M. elsdenii, lactate was never greater than 2 mM (P < .05) throughout fermentation. Cultures treated with M. elsdenii had greater amounts (P < .05) of isobutyrate, butyrate, isovalerate, and valerate than untreated cultures. After 24 h of fermentation, one-half of the culture fluid was transferred to an equal volume of fresh buffer with substrate but was not inoculated with further quantities of M. elsdenii. Six hours after transfer, cultures that had been originally treated with M. elsdenii had lower (P < .05) amounts of lactate than untreated cultures. Inoculation with M. elsdenii has potential to prevent lactate accumulation in diets containing readily fermentable carbohydrates.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002480 Cellulase An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans. Endo-1,4-beta-Glucanase,Cellulysin,Endoglucanase,Endoglucanase A,Endoglucanase C,Endoglucanase E,Endoglucanase IV,Endoglucanase Y,beta-1,4-Glucan-4-Glucanohydrolase,Endo 1,4 beta Glucanase,beta 1,4 Glucan 4 Glucanohydrolase
D005232 Fatty Acids, Volatile Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans. Fatty Acids, Short-Chain,Short-Chain Fatty Acid,Volatile Fatty Acid,Acid, Short-Chain Fatty,Acid, Volatile Fatty,Fatty Acid, Short-Chain,Fatty Acid, Volatile,Fatty Acids, Short Chain,Short Chain Fatty Acid,Short-Chain Fatty Acids,Volatile Fatty Acids
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012417 Rumen The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed) Rumens

Related Publications

L Kung, and A O Hession
March 2019, Journal of animal physiology and animal nutrition,
L Kung, and A O Hession
November 2002, Current microbiology,
L Kung, and A O Hession
October 2011, Journal of bacteriology,
L Kung, and A O Hession
June 1989, Applied and environmental microbiology,
L Kung, and A O Hession
January 2019, Frontiers in microbiology,
L Kung, and A O Hession
January 1993, Applied and environmental microbiology,
Copied contents to your clipboard!