Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. 1995

R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
Department of Biochemistry and Molecular Biology IMBW, BioCentrum Amsterdam, The Netherlands.

Structural features of Internal Transcribed Spacer 2 (ITS2) important for the correct and efficient removal of this spacer from Saccharomyces cerevisiae pre-rRNA were identified by in vivo mutational analysis based upon phylogenetic comparison with its counterparts from four different yeast species. Compatibility between ITS2 structure and the S. cerevisiae processing machinery was found to have been maintained over only a short evolutionary distance, in contrast to the situation for ITS1. Nevertheless, cis-acting elements required for correct and efficient processing are confined predominantly to those regions of the spacer that show the highest degree of evolutionary conservation. Mutation or deletion of each of these regions severely reduced production of mature 26 S, but not 17 S rRNA, mainly by impeding processing of the 29 SB precursor. In some cases, however, conversion of 29SA into 29 SB pre-rRNA also appeared to be affected. Deletion of non-conserved segments, on the other hand, caused little or no disturbance in processing. Surprisingly, some combinations of such individually neutral deletions had a severe negative effect on the removal of ITS2, suggesting a requirement for a higher-order structure of ITS2. Finally, even structural alterations of ITS2 that did not noticeably affect processing, significantly reduced the growth rate of cells that exclusively express the mutant rDNA units. We take this as further evidence for a direct role of ITS2 in the formation of fully functional 60 S ribosomal subunits.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA

Related Publications

R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
February 1990, Journal of molecular biology,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
February 1992, Journal of molecular biology,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
December 1992, Journal of molecular biology,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
December 1998, Journal of molecular biology,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
June 1984, The Biochemical journal,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
June 1990, Biochemistry,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
December 1994, Nucleic acids research,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
April 1986, Nucleic acids research,
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
October 2004, RNA (New York, N.Y.),
R W van Nues, and J M Rientjes, and S A Morré, and E Mollee, and R J Planta, and J Venema, and H A Raué
December 1995, Yeast (Chichester, England),
Copied contents to your clipboard!