[Pyruvate kinase (PK) isozyme switching and genetic heterogeneity of PK deficiency]. 1995

H Kanno
Okinaka Memorial Institute for Medical Research.

Pyruvate kinase (PK) is a key glycolytic enzyme and has two structural genes; the L/R-gene encodes the L- and R-type PK, whereas the M-gene encodes the M1- and M2-type isozymes. The isozyme switches from the M2 to the R-type during erythroid differentiation, and recent results showed that the switching was achieved by activation of the R-PK promoter activity and the involvement of erythroid-specific transcription factors has been demonstrated. Glycolysis is a major energy source for red cells, therefore, PK deficiency results in hemolysis. PK deficiency is the most common glycolytic enzyme defect associated with hereditary hemolytic anemia, and inherited in an autosomal recessive manner. To date, 46 gene mutations have been identified, and molecular approach might be helpful for diagnosis of PK deficiency, particularly among transfusion-dependent subjects or infantile cases.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000743 Anemia, Hemolytic A condition of inadequate circulating red blood cells (ANEMIA) or insufficient HEMOGLOBIN due to premature destruction of red blood cells (ERYTHROCYTES). Anemia, Hemolytic, Acquired,Anemia, Microangiopathic,Haemolytic Anaemia,Hemolytic Anemia,Hemolytic Anemia, Acquired,Microangiopathic Hemolytic Anemia,Acquired Hemolytic Anemia,Anaemia, Haemolytic,Anemia, Acquired Hemolytic,Anemia, Microangiopathic Hemolytic,Haemolytic Anaemias,Hemolytic Anemia, Microangiopathic,Microangiopathic Anemia,Microangiopathic Hemolytic Anemias

Related Publications

H Kanno
January 1993, Haematologica,
H Kanno
January 1975, British journal of haematology,
H Kanno
September 2020, Haematologica,
H Kanno
February 1974, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
H Kanno
November 2004, British journal of haematology,
H Kanno
January 1988, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
Copied contents to your clipboard!