Dual modulation of the gamma-aminobutyric acid type A receptor/ionophore by alkyl-substituted gamma-butyrolactones. 1995

K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Alkyl-substituted gamma-butyrolactones (GBLs) and gamma-thiobutyrolactones exhibit convulsant or anticonvulsant activity, depending on the alkyl substituents. alpha-Substituted lactones with small alkyl substituents are anticonvulsant and potentiate gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas beta-substituted compounds are usually convulsant and block GABAA currents. We have now found that this distinction is not so clear-cut, in that some compounds can both block and augment GABAA currents, but with different time courses. For example, alpha,alpha-diisopropyl-GBL (alpha-DIGBL) potentiates exogenous GABA currents in cultured rat hippocampal neurons but diminishes GABA-mediated inhibitory postsynaptic currents. A more detailed analysis demonstrates a triphasic effect of alpha-DIGBL on GABA currents, with a rapid inhibitory phase, a slower potentiating phase, and then an "off response" when the GABA/alpha-DIGBL perfusion is stopped. Thus, alpha-DIGBL can inhibit and potentiate GABA currents with kinetically different time courses. Inhibition is more rapid, but at steady state potentiation dominates. Using a simplified model of the GABAA receptor/ionophore, we have simulated our experimental observations with alpha-DIGBL. Another lactone, beta-ethyl-beta-methyl-gamma-thiobutyrolactone, also has dual actions, with inhibition predominating at low concentrations and potentiation predominating at high concentrations. We propose two distinct GBL modulatory sites on the GABAA receptor, i.e., an inhibitory "picrotoxin" site and an enhancing "lactone site." New information on the structure of the GABAA receptor/ionophore may allow the molecular dissection of these two sites.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015107 4-Butyrolactone One of the FURANS with a carbonyl thereby forming a cyclic lactone. It is an endogenous compound made from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. It is also used as a pharmacological agent and solvent. 1,4-Butanolide,4-Hydroxybutyric Acid Lactone,Furanone, tetrahydro-2-,gamma-Butyrolactone,Dihydro-2(3H)-furanone,1,4 Butanolide,4 Butyrolactone,4 Hydroxybutyric Acid Lactone,Furanone, tetrahydro 2,Lactone, 4-Hydroxybutyric Acid,gamma Butyrolactone
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
October 1984, European journal of pharmacology,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
May 1998, The Journal of biological chemistry,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
September 1986, Molecular pharmacology,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
October 1984, Federation proceedings,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
October 1999, Molecular pharmacology,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
September 1984, Biochemical and biophysical research communications,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
September 1982, Molecular pharmacology,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
June 1995, Molecular pharmacology,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
April 1991, Journal of medicinal chemistry,
K D Holland, and G C Mathews, and A M Bolos-Sy, and J B Tucker, and P A Reddy, and D F Covey, and J A Ferrendelli, and S M Rothman
October 1991, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!