Phosphofructokinase deficiency: recent advances in molecular biology. 1995

H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
Second Department of Internal Medicine, Osaka University Medical School, Japan.

Phosphofructokinase (PFK) plays a major role in glycolysis. Deficiency of PFK-M is characterized by muscle weakness due to fuel crisis in exercising muscles. To elucidate the gene defect of PFK-deficient patients, we have cloned and determined the complete structure and transcription mechanism of human PFK-M mRNA and gene. Molecular defects were investigated in three unrelated Japanese family cases. The first case was characterized by a point mutation at the donor site of intron 15 of the PFK-M gene. Cryptic splicing resulted in a 25 amino acid truncation in the patient's PFK-M. The second case possessed a point mutation at the donor site of intron 19, resulting in the skipping of exon 19 and the truncation of 55 amino acids. In the third case, a missense mutation was identified in the coding region. The review of an updated mutation repertoire indicates the heterogeneity of the molecular mechanism of the disease.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009135 Muscular Diseases Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE. Muscle Disorders,Myopathies,Myopathic Conditions,Muscle Disorder,Muscular Disease,Myopathic Condition,Myopathy
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005260 Female Females
D006003 Glycogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
December 2014, Current opinion in virology,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
June 2007, The Journal of general virology,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
January 2007, Indian journal of leprosy,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
November 1995, Revue neurologique,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
May 1994, Current opinion in oncology,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
January 1997, Neuroimmunomodulation,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
August 1980, British journal of hospital medicine,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
May 2000, Gan to kagaku ryoho. Cancer & chemotherapy,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
August 1986, The Malaysian journal of pathology,
H Nakajima, and T Hamaguchi, and T Yamasaki, and S Tarui
January 1995, The Journal of general virology,
Copied contents to your clipboard!