Metabolism and pharmacokinetics of the cardiotonic agent piroximone and of its major metabolite in dog. 1995

M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
Department of Clinical Biochemistry, Marion Merrell Dow, Strasbourg, France.

1. Piroximone was administered orally (p.o.) and intravenously (i.v.) to male Beagle dog. In vitro, piroximone was incubated with dog liver microsomes. 2. Piroximone was metabolized in vivo to five metabolites (1-5) representing approximately 20% of the total administered dose. 3. The parent drug and its metabolites were totally eliminated in urine. 4. Reduced piroximone (piroximole), representing approximately 10% of the administered dose, was identified as the major metabolic product in vivo. 5. In vitro, piroximone was metabolized by dog liver microsomes to isonicotinic acid (1) and piroximole (4), with the same ratio as in vivo (1:4 = 0.2). The Michaelis-Menten parameters were determined for piroximole formation and were: Kmapp = 733 microM and Vmax app = 232 pmol/mg protein/min. 6. Comparison of the pharmacokinetics of piroximone and piroximole revealed that both compounds were very well absorbed (F = 93 +/- 7 and 89 +/- 8% respectively), slightly distributed (Vd app = 0.78 +/- 0.04 and 1.02 +/- 0.09 l/kg p.o., and 0.95 +/- 0.05 and 0.76 +/- 0.13 1/kg i.v. respectively) and excreted into urine to the same extent (UEx = 54.7 +/- 1.2 and 53.2 +/- 12.6% p.o., and 59.1 +/- 5.3 and 51.2 +/- 5.7% i.v. respectively), except that the clearance of piroximone was two-fold higher than that observed for piroximole (ClT = 7.77 +/- 1.35 and 4.12 +/- 0.44 ml/min/kg p.o., and 7.68 +/- 1.25 and 4.06 +/- 0.51 ml/min/kg i.v. respectively).

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007539 Isonicotinic Acids Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic Acid,Acid, Isonicotinic,Acids, Isonicotinic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
December 1991, Arzneimittel-Forschung,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
January 1985, Drug metabolism and disposition: the biological fate of chemicals,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
July 1996, Journal of pharmaceutical sciences,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
November 1985, Xenobiotica; the fate of foreign compounds in biological systems,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
February 2007, Journal of veterinary pharmacology and therapeutics,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
January 1991, European journal of drug metabolism and pharmacokinetics,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
January 2018, Mutation research. Genetic toxicology and environmental mutagenesis,
M Berg-Candolfi, and B Dulery, and F Jehl, and K D Haegele
December 2014, Journal of veterinary pharmacology and therapeutics,
Copied contents to your clipboard!