Cytoarchitecture of the substantia nigra pars lateralis in the opossum (Didelphis virginiana): a correlated light and electron microscopic study. 1995

T P Ma, and J C Hazlett
Department of Anatomy and Neurology, University of Mississippi Medical Center, Jackson 39216-4505, USA.

BACKGROUND The substantia nigra has been divided into three subdivisions. However, the cytoarchitecture of one of these subdivisions, the pars lateralis (SNl), has not been previously examined in detail at the light and electron microscopic levels in any species. In the adult opossum, the three nigral subdivisions can be easily distinguished as distinct, rostrocaudally oriented cell groups separated by neuron-free zones. Thus it was possible to determine the boundaries of the SNl unambiguously. This report covers the results of an examination of the morphology and organization of the SNl in the opossum. METHODS Material from 13 opossums was used for this study. Eight of the animals had been previously stained for Nissl substance (n = 4) or impregnated by the Golgi technique (n = 4). The remaining five animals were prepared for electron microscopic studies using standard procedures. RESULTS Two cell types were identified on the basis of morphological differences, small and medium-large neurons. Small neurons (10-18 microns long axis) have large nuclei with moderate amounts of heterochromatin and a thin rim of cytoplasm. They have long (up to 500 microns), spine-free dendrites. Medium-large neurons (18-54 microns long axis) have rounded nuclei with electron-lucent nucleoplasm. Few indentations of the nuclear envelope were observed. The surrounding cytoplasm has dense arrays of organelles. Nissl bodies are particularly prominent in the form of pyramids with their bases at juxtanuclear positions and their apices directed toward emerging dendrites. Dendrites of medium-large neurons are long (some > 1 mm in length), are primarily oriented in the frontal plane, and extend along the dorsal surface of or into the cerebral peduncle. Some cells have dendrites that are moderately spinous, whereas other neurons possess sparsely spinous dendrites. Relatively few synaptic profiles are observed to contact somata and proximal dendrites. CONCLUSIONS This report provides added morphological support for the idea that the SNl is a distinct subdivision of the substantia nigra, a distinction previously made on the basis of the physiologically characterized relationship between the lateral substantia nigra and orienting behaviors and seizure-related function.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras

Related Publications

T P Ma, and J C Hazlett
October 1971, The Journal of comparative neurology,
T P Ma, and J C Hazlett
June 2000, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
T P Ma, and J C Hazlett
April 1979, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
T P Ma, and J C Hazlett
January 1985, Acta anatomica,
T P Ma, and J C Hazlett
January 1970, The American journal of physiology,
Copied contents to your clipboard!