Ketoconazole inhibits oxidative modification of low density lipoprotein. 1995

M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
Department of Atherogenesis, Institute of General Pathology and Human Ecology, Novosibirsk, Russia.

Known cytochrome P450-dependent oxygenase inhibitor ketoconazole (5-50 microM) blocked the murine macrophage-mediated modification of human low density lipoprotein (LDL) as measured by production of thiobarbituric acid-reactive substance, stimulation of [125I]LDL degradation in a fresh set of macrophages and LDL electrophoretic mobility, in a dose-dependent manner with complete inhibition at 30-40 microM. When resident macrophages were incubated with LDL in the presence of metyrapone, methoxsalen and alpha-naphthaflavone at concentrations that have been shown to inhibit the cytochrome P450-dependent oxygenases, there was no change in LDL modification. Induction of benzo[alpha]pyrene hydroxylase activity in macrophages by 24 h incubation with benzo[alpha]pyrene was accompanied by a 1.5-fold increase of LDL modification which has been leveled down by ketoconazole as well as methoxsalen and alpha-naphthaflavone. Furthermore, ketoconazole effectively diminished cell-free LDL oxidation induced by iron, but not copper ions, and reduced the spontaneous and zymosan-stimulated lucigenin-amplified chemiluminescence of macrophages. The data allow us to suggest that ketoconazole inhibits LDL oxidation by acting as an iron chelator and/or inhibitor of prooxidant forms of iron-containing enzymes.

UI MeSH Term Description Entries
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008730 Methoxsalen A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. 8-Methoxypsoralen,Ammoidin,Xanthotoxin,8-MOP,Deltasoralen,Dermox,Geroxalen,Meladinina,Meladinine,Meloxine,Methoxa-Dome,Méladinine,Oxsoralen,Oxsoralen-Ultra,Puvalen,Ultramop,8 MOP,8 Methoxypsoralen,8MOP,Methoxa Dome,Oxsoralen Ultra
D008797 Metyrapone An inhibitor of the enzyme STEROID 11-BETA-MONOOXYGENASE. It is used as a test of the feedback hypothalamic-pituitary mechanism in the diagnosis of CUSHING SYNDROME. Methbipyranone,Methopyrapone,Metopiron,Metopirone,Métopirone,SU 4885
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
May 1990, Biochimica et biophysica acta,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
February 1986, The Journal of clinical investigation,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
November 1994, Atherosclerosis,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
May 1997, Journal of pineal research,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
August 1995, Free radical research,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
January 1995, Atherosclerosis,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
October 1991, Biochimica et biophysica acta,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
August 2013, Journal of cardiovascular pharmacology,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
June 1996, The Biochemical journal,
M I Dushkin, and N K Zenkov, and E B Menshikova, and E N Pivovarova, and Lyubimov GYu, and N N Volsky
April 1993, The American journal of medicine,
Copied contents to your clipboard!