Neural tube can induce fast myosin heavy chain isoform expression during embryonic development. 1995

G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France.

We investigated the role of the neural tube in muscle cell differentiation in developing somitic myotome of chick embryo, particularly through fast myosin heavy chain (MHC) isoform expression. An embryonic fast MHC labeled with EB165 mAb was expressed in somitic cells from stage 15 of Hamburger and Hamilton (H.H.) (24 somites). Moreover, a distinct early embryonic fast MHC was expressed only from stage 15 of H.H. to stage 36 (E10). Like neonatal MHC, this isoform was labeled with 2E9 mAb but differed in its immunopeptide mapping. Expression of EB165-labeled embryonic fast MHC occurred in somitic myotomes deprived of neural tube influence by in ovo ablation as well as in somite explants cultured alone in vitro. Conversely, ablation of the neural tube prevented somitic expression of MHC labeled with 2E9 mAb. The neural tube induced in vitro expression of this MHC in explants of somites which failed to express it when cultured alone. These results indicate that signals emanating from the neural tube are required for the expression of early embryonic fast MHC isoform in developing somitic myotome.

UI MeSH Term Description Entries
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
August 1998, The American journal of physiology,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
August 1989, Developmental biology,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
December 1993, The Journal of experimental zoology,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
September 1987, Developmental biology,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
February 1991, The Journal of biological chemistry,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
May 2022, Life (Basel, Switzerland),
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
April 2020, Development (Cambridge, England),
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
August 2004, Veterinary research communications,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
May 2007, Journal of animal science,
G Auda-Boucher, and F Merly, and M F Gardahaut, and J Fontaine-Pérus
June 1989, Developmental biology,
Copied contents to your clipboard!