The influence of two anion-transport inhibitors, 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate and 4,4'-dibenzoylstilbene-2,2'-disulfonate, on the self-association of erythrocyte band 3 protein. 1995

P Schuck, and B Legrum, and H Passow, and D Schubert
Institut für Biophysik, J. W. Goethe-Universität, Frankfurt am Main, Germany.

4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulfonate and 4,4'-dibenzoylstilbene-2,2'-disulfonate potently inhibit the erythrocyte anion transporter. These inhibitors act by binding, with a 1:1 stoichiometry, to the band 3 transport protein. We have studied, by sedimentation equilibrium analysis in an analytical ultracentrifuge, the effect of the two closely related stilbenedisulfonates on the state of association of band 3 in the nonionic detergent nonaethyleneglycol lauryl ether. It was found that covalent binding of 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate to band 3 did not significantly disturb the monomer/dimer/tetramer association equilibrium shown by the unliganded protein. An entirely different result was obtained after addition of 4,4'-dibenzoylstilbene-2,2'-disulfonate to the protein, at both low and high chloride concentrations. The amount of band 3 dimer in the samples increased with increasing inhibitor concentration c1, and for c1 > or = 15 microM virtually all of the protein was present as dimer. After removal of the inhibitor (by gel filtration or dialysis), the original monomer/dimer/tetramer distribution of the band 3 protein was restored. Our data show that the (noncovalent) binding of 4,4'-dibenzoylstilbene-2,2'-disulfonate drastically changes the coupling between band 3 protomers. In addition, a reversible change in the state of association of band 3 induced by ligand binding is demonstrated.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion
D017878 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid An inhibitor of anion conductance including band 3-mediated anion transport. 4,4'-Diisothiocyano-2,2'-Stilbene Disulfonic Acid,DIDS

Related Publications

P Schuck, and B Legrum, and H Passow, and D Schubert
January 1999, Biochemistry and cell biology = Biochimie et biologie cellulaire,
P Schuck, and B Legrum, and H Passow, and D Schubert
July 1986, The Journal of biological chemistry,
P Schuck, and B Legrum, and H Passow, and D Schubert
January 1984, The Journal of membrane biology,
P Schuck, and B Legrum, and H Passow, and D Schubert
June 1997, Biochimica et biophysica acta,
P Schuck, and B Legrum, and H Passow, and D Schubert
March 2007, Free radical research,
P Schuck, and B Legrum, and H Passow, and D Schubert
September 1992, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!