Site-directed mutagenesis in the catalytic center of the restriction endonuclease EcoRI. 1995

G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
Zentrum Biochemie, Medizinische Hochschule Hannover, Germany.

The catalytic center of the restriction endonuclease (ENase) EcoRI is structurally homologous to that of EcoRV, BamHI and PvuII. Each of these ENases contains a short motif of three to four amino acid (aa) residues which are positioned in a similar orientation to the scissile phosphodiester bond. We have mutated these aa (Pro90, Asp91, Glu111 and Lys113) in EcoRI to determine their individual roles in catalysis. The replacement of Asp91 and Lys113, respectively, by conservative mutations (Ala91, Asn91, Ala113, Gln113, His113 and Leu113) resulted in a reduction of binding affinity and complete loss of cleavage activity. Only Lys113-->Arg substitution still allows to cleave DNA, albeit with a rate reduced by at least four orders of magnitude. Lys113 seems to stabilize the structure of the wild-type (wt) ENase since all five ENase variants with mutations at this position show a strongly enhanced tendency to aggregate. The Ala and Gln mutants of Glu111 bind the recognition sequence slightly stronger than wt EcoRI and cleave it with a low, but detectable rate. Only the Glu111-->Lys mutant, in which the charge is reversed, shows neither binding nor cleavage activity. Pro90 is not important for catalysis, because the Ala90 mutant cleaves DNA with an only slightly reduced rate. Under star conditions, however, this mutant is even more active than wt EcoRI. Therefore, the charged aa Asp91, Glu111 and Lys113 are essential for catalytic activity of the EcoRI ENase.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015246 Deoxyribonuclease EcoRI One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/AATTC at the slash. EcoRI is from E coliRY13. Several isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme EcoRI,Deoxyribonuclease SsoI,Endonuclease EcoRI,Eco RI,Eco-RI,EcoRI Endonuclease,Endodeoxyribonuclease ECoRI,Endodeoxyribonuclease HsaI,Endonuclease Eco159I,Endonuclease Eco82I,Endonuclease RsrI,Endonuclease SsoI,HsaI Endonuclease,Restriction Endonuclease RsrI
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
October 1999, Bioscience, biotechnology, and biochemistry,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
January 1978, Journal of molecular biology,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
September 2000, Biochemistry. Biokhimiia,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
June 1980, Biochemical Society transactions,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
January 1996, Journal of molecular recognition : JMR,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
May 1983, The Biochemical journal,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
February 1996, FEBS letters,
G Grabowski, and A Jeltsch, and H Wolfes, and G Maass, and J Alves
November 1981, European journal of biochemistry,
Copied contents to your clipboard!