Toxicodynamics and toxicokinetics of amikacin in the guinea pig cochlea. 1995

A R Beaubien, and K Karpinski, and E Ormsby
Biopharmaceutics and Pharmacodynamics Division, Ottawa, Ontario, Canada.

An extensive overview of the relationship between cochlear toxicity and amikacin blood concentrations in the guinea pig is provided which should assist in the clinical application of this class of antibiotic. A data set previously used to relate the incidence of amikacin ototoxicity to dosing rates and blood concentrations was re-examined to assess the toxicodynamics of amikacin in terms of decibels of hearing loss across dosing rate, hearing frequency and time following drug exposure. Animals in this data set had received continuously i.v. infused amikacin over an 8-fold range of dosing rates. Preliminary analysis indicated that the data were consistent with a sigmoid relationship between hearing loss (decibels) and area under the amikacin plasma concentration vs time curve cumulated over the entire course of drug administration (cAUC). The sigmoid model was therefore used as the backbone of a far more comprehensive toxicodynamic model which described all the data with a single equation. Testing with this model showed that the cAUC required to produce half-maximum hearing loss (cAUC-1/2) was related to dosing rate (P < 0.01), to hearing frequency (P < 0.00001), and to post-drug interval (P < 0.00001). Maximum hearing loss (difference between upper and lower sigmoid asymptotes) was less than total and was significantly related to frequency (P < 0.00001). No effects could be detected on the sigmoid slope. Further modelling of the significant effects detected by the comprehensive toxicodynamic model was done to determine if they could be described by simple relationships or by biologically relevant sub-models. Modelling of maximum hearing loss (postulated to represent loss of mainly outer hair cell function) indicated that this parameter was constant at about 61 decibels for 2-12 kHz and linearly decreased with log frequency for frequencies > 12 kHz. Modelling of cAUC-1/2 on frequency indicated that there was a strong inverse linear relationship to log frequency. Modelling of cAUC-1/2 on post-drug interval indicated that delayed ototoxicity continued at progressively slower rates for at least 56 days after drug administration had ceased. Modelling of cAUC-1/2 on dosing rate showed an increased requirement for drug as the dosing rate decreased. However, cAUC-1/2 changed no more than 20% across the range of dosing rates compared to the 8-fold difference in mean steady-state plasma concentrations, suggesting that plasma concentration is not a primary determinant of ototoxicity. A toxicokinetic model was developed which explained the dosing rate effect on cAUC-1/2 very successfully.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006320 Hearing Tests Part of an ear examination that measures the ability of sound to reach the brain. Hearing in Noise Test,Quick Speech-in Noise Test (QuickSIN),Real Ear Measurement,Speech in Noise Hearing Test,Ear Measurement, Real,Ear Measurements, Real,Hearing Test,Measurement, Real Ear,Measurements, Real Ear,Quick Speech in Noise Test (QuickSIN),Real Ear Measurements,Test, Hearing,Tests, Hearing
D000583 Amikacin A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics. A.M.K,Amikacin Sulfate,Amikacina Medical,Amikacina Normon,Amikafur,Amikalem,Amikason's,Amikayect,Amikin,Amiklin,Amukin,BB-K 8,BB-K8,Biclin,Biklin,Gamikal,Kanbine,Oprad,Yectamid,BB K 8,BB K8,BBK 8,BBK8,Medical, Amikacina,Normon, Amikacina,Sulfate, Amikacin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings

Related Publications

A R Beaubien, and K Karpinski, and E Ormsby
July 1986, Antimicrobial agents and chemotherapy,
A R Beaubien, and K Karpinski, and E Ormsby
January 2008, Advances in experimental medicine and biology,
A R Beaubien, and K Karpinski, and E Ormsby
December 1998, Toxicology letters,
A R Beaubien, and K Karpinski, and E Ormsby
January 1987, Progress in clinical and biological research,
A R Beaubien, and K Karpinski, and E Ormsby
January 1999, Current opinion in drug discovery & development,
A R Beaubien, and K Karpinski, and E Ormsby
January 1970, Archiv fur klinische und experimentelle Ohren- Nasen- und Kehlkopfheilkunde,
A R Beaubien, and K Karpinski, and E Ormsby
August 2013, Environmental toxicology and chemistry,
A R Beaubien, and K Karpinski, and E Ormsby
May 1966, Acta oto-laryngologica,
A R Beaubien, and K Karpinski, and E Ormsby
December 1951, The Laryngoscope,
Copied contents to your clipboard!