Transcriptional activation of the human TNF-alpha promoter by superantigen in human monocytic cells: role of NF-kappa B. 1995

N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
Division of Immunology, Children's Hospital, Boston, MA 02115, USA.

We have studied the transcriptional activation of the human TNF-alpha gene by the superantigen staphylococcal enterotoxin A (SEA) in the human premonocytic cell line THP-1. Nuclear proteins from SEA-stimulated THP-1 cells bound strongly to kappa 3, the most proximal of three putative NF-kappa B binding sites (kappa 1-kappa 3) found in the 5' regulatory region of the TNF-alpha gene, but only weakly to kappa 1, the most distal of the NF-kappa B binding sites, and showed no binding to kappa 2. The mobility of the kappa 3-nucleoprotein complex was identical to that of complexes formed between nuclear proteins and the consensus NF-kappa B seuqence. Moreover, both 5' and 3' mutants of kappa 3 were unable to displace kappa 3 binding, suggesting that the kappa 3 binding complex induced by SEA has the characteristics of NF-kappa B. Studies using Abs directed against the NF-kappa B subunits p50 and p65 suggested that both p50 and p65 bind to the kappa 3 sequence. Reporter gene assays showed that deletion of kappa 3 (-99 to -89 bp) and point mutation of the three 5' guanine bases in the kappa 3 sequence reduced the inducibility of the TNF-alpha promoter by SEA and LPS. These results indicate that superantigen induces NF-kappa B in human monocytic cells and suggest that binding of NF-kappa B to the kappa 3 site of the TNF-alpha promoter plays an important role in the transcriptional activation of the TNF-alpha gene by superantigen.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol

Related Publications

N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
April 1996, American journal of respiratory cell and molecular biology,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
January 1995, Journal of inflammation,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
October 2002, Biochemistry,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
September 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
January 2012, BMC molecular biology,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
September 1994, Nucleic acids research,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
November 2001, Shock (Augusta, Ga.),
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
July 1995, Immunobiology,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
August 1992, Proceedings of the National Academy of Sciences of the United States of America,
N S Trede, and A V Tsytsykova, and T Chatila, and A E Goldfeld, and R S Geha
July 2000, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!