Erythrocyte cellular and membrane deformability in hereditary spherocytosis. 1979

K Nakashima, and E Beutler

In order to determine whether the relative rigidity of the hereditary spherocytosis (HS) red cell is due to membrane rididity or merely to an altered surface/volume ratio, we investigated the deformability of resealed red cell membranes from patients with HS. Whereas the osmotic fragility of intact red cells of HS patients showed the expected increase, the osmotic fragility of resealed HS membranes was normal, thus indicating that their surface/volume ratio was normal. Measurements with an ektacytometer showed that deformability of intact HS cells was markedly diminished, whereas deformability of resealed HS membranes was normal. These findings indicate that the HS red cell membrane is not intrinsically abnormally rigid, as has been suggested, but that the lack of deformability of the erythrocyte is primarily a function of the altered surface/volume ratio.

UI MeSH Term Description Entries
D009996 Osmotic Fragility RED BLOOD CELL sensitivity to change in OSMOTIC PRESSURE. When exposed to a hypotonic concentration of sodium in a solution, red cells take in more water, swell until the capacity of the cell membrane is exceeded, and burst. Saline Fragility,Fragility, Osmotic,Fragility, Saline
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004905 Erythrocyte Aging The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days. Erythrocyte Survival,Aging, Erythrocyte,Survival, Erythrocyte
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013103 Spherocytosis, Hereditary A group of familial congenital hemolytic anemias characterized by numerous abnormally shaped erythrocytes which are generally spheroidal. The erythrocytes have increased osmotic fragility and are abnormally permeable to sodium ions. Hereditary Spherocytoses,Spherocytoses, Hereditary

Related Publications

K Nakashima, and E Beutler
April 1990, Rinsho byori. The Japanese journal of clinical pathology,
K Nakashima, and E Beutler
January 1986, The Italian journal of biochemistry,
K Nakashima, and E Beutler
January 1977, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
K Nakashima, and E Beutler
June 1981, [Rinsho ketsueki] The Japanese journal of clinical hematology,
K Nakashima, and E Beutler
February 1992, Biochemistry international,
K Nakashima, and E Beutler
January 1974, British journal of haematology,
K Nakashima, and E Beutler
June 1983, British journal of haematology,
K Nakashima, and E Beutler
November 1977, British journal of haematology,
K Nakashima, and E Beutler
January 1992, Gematologiia i transfuziologiia,
Copied contents to your clipboard!