Disposition and metabolism of acrylic acid in C3H mice and Fischer 344 rats after oral or cutaneous administration. 1995

K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
Toxicology Department, Rohm and Haas Company, Spring House, Pennsylvania 19477-0904, USA.

Acrylic acid (AA) is used in large amounts to produce acrylic esters and polymers. Here we report on the disposition and metabolism of [1-14C]AA in male C3H mice and Fischer 344 (F344) rats after oral (40 and 150) mg/kg) or cutaneous (10 and 40 mg/kg) administration. Although these and other strains of rodents have been used frequently in toxicity studies of AA, results of pharmacokinetic studies are available for only the Sprague-Dawley rat. In the current study, C3H mice rapidly absorbed and metabolized orally administered AA, with about 80% of the dose exhaled as 14CO2 within 24 h. Excretion in urine and feces accounted for approximately 3% and 1% of the dose, respectively. Elimination of 14C from plasma, liver, and kidney was rapid but was slower from fat. The disposition of orally administered AA in F344 rats was similar to the results obtained from mice. After cutaneous administration to C3H mice, about 12% of the dose was absorbed, while the remainder apparently evaporated. Approximately 80% of the absorbed fraction of the dose was metabolized to 14CO2 within 24 h. Excretion in urine and feces each accounted for less than 0.5% of the dose. Elimination of radioactivity from plasma, liver, and kidney was rapid; however, levels in fat were higher at 72 h than at 1 or 8 h. After cutaneous administration to F344 rats, 19-26% of the dose was absorbed, and the rest apparently evaporated. Disposition of the absorbed fraction of the dose was similar to results found in mice. Results from an in vitro experiment with rat skin showed that at least 60% of the applied dose evaporated and about 25% was absorbed, confirming the in vivo results. High-performance liquid chromatography (HPLC) analysis of rat urine and rat and mouse tissues indicated that absorbed AA was rapidly metabolized by the beta-oxidation pathway of propionate catabolism. In summary, rapid detoxification of systemically absorbed AA, as observed here in C3H mice and F344 rats, can explain findings that AA causes minimal systemic toxicity despite its causing irritation at portal-of-entry tissues.

UI MeSH Term Description Entries
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D000179 Acrylates Derivatives of acrylic acid (the structural formula CH2
D000279 Administration, Cutaneous The application of suitable drug dosage forms to the skin for either local or systemic effects. Cutaneous Drug Administration,Dermal Drug Administration,Drug Administration, Dermal,Percutaneous Administration,Skin Drug Administration,Transcutaneous Administration,Transdermal Administration,Administration, Dermal,Administration, Transcutaneous,Administration, Transdermal,Cutaneous Administration,Cutaneous Administration, Drug,Dermal Administration,Drug Administration, Cutaneous,Skin Administration, Drug,Administration, Cutaneous Drug,Administration, Dermal Drug,Administration, Percutaneous,Administrations, Cutaneous,Administrations, Cutaneous Drug,Administrations, Dermal,Administrations, Dermal Drug,Administrations, Percutaneous,Administrations, Transcutaneous,Administrations, Transdermal,Cutaneous Administrations,Cutaneous Administrations, Drug,Cutaneous Drug Administrations,Dermal Administrations,Dermal Drug Administrations,Drug Administrations, Cutaneous,Drug Administrations, Dermal,Drug Skin Administrations,Percutaneous Administrations,Skin Administrations, Drug,Skin Drug Administrations,Transcutaneous Administrations,Transdermal Administrations
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012869 Skin Absorption Uptake of substances through the SKIN. Absorption, Skin,Intracutaneous Absorption,Intradermal Absorption,Percutaneous Absorption,Transcutaneous Absorption,Transdermal Absorption,Absorption, Intracutaneous,Absorption, Intradermal,Absorption, Percutaneous,Absorption, Transcutaneous,Absorption, Transdermal,Absorptions, Intracutaneous,Absorptions, Intradermal,Absorptions, Percutaneous,Absorptions, Skin,Absorptions, Transcutaneous,Absorptions, Transdermal,Intracutaneous Absorptions,Intradermal Absorptions,Percutaneous Absorptions,Skin Absorptions,Transcutaneous Absorptions,Transdermal Absorptions
D014014 Tissue Adhesives Substances used to cause adherence of tissue to tissue or tissue to non-tissue surfaces, as for prostheses. Adhesive, Tissue,Adhesives, Tissue,Tissue Adhesive
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
March 2005, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
September 1984, Toxicology,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
October 1984, Toxicology letters,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
January 1985, Cancer research,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
April 2000, Drug metabolism and disposition: the biological fate of chemicals,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
October 1985, Toxicology,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
January 1990, Archives of toxicology,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
January 1982, Journal of toxicology and environmental health,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
September 1986, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
K A Black, and J L Beskitt, and L Finch, and M J Tallant, and J R Udinsky, and S W Frantz
August 1989, Toxicology and applied pharmacology,
Copied contents to your clipboard!