Responses of the guinea-pig isolated olfactory cortex slice to gamma-aminobutyric acid recorded with extracellular electrodes. 1979

D A Brown, and M Galvan

1. Potential changes between the pial and cut surfaces of slices of guinea-pig olfactory cortex in vitro produced by gamma-aminobutyric acid (GABA) were recorded with extracellular electrodes. 2. GABA, superfused over the pial surface (0.1 to 10 mM), produced a pial-negative potential deflection, accompanied by inhibition of the postsynaptic response to lateral olfactory tract (LOT) stimulation. 3. This effect was replicated by the following compounds (potency relative to GABA = 1, in brackets): 3-aminopropanesulphonic acid (5.3), epsilon-aminovaleric acid (0.07), beta-alanine (0.07), beta-amino-nibutyric acid 0.05), epsilon-aminocaproic acid, alpha-amino-isobutyric acid, L-leucine (less than 0.02). 4. L-Glutamate (1 to 10 mM) produced a very large surface negative shift, with relatively less synaptic inhibition. Glycine (1 to 10 mM) produced less surface negatively, accompanied by synaptic inhibition. 5. Responses to GABA were antagonized more effectively than those to glycine by bicuculline (3 to 30 micrometer) and picrotoxin (1 to 30 micrometer). Strychnine (1 to 10 micrometer) incompletely inhibited responses to glycine. 6. It is concluded that, while the locus within the slice of these effects is uncertain, the preparation may be useful for testing the interaction of drugs with cerebral GABA receptors.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D018756 GABA Antagonists Drugs that bind to but do not activate GABA RECEPTORS, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID and GABA RECEPTOR AGONISTS. gamma-Aminobutyric Acid Antagonists,GABA Antagonist,GABA Receptor Antagonists,Acid Antagonists, gamma-Aminobutyric,Antagonist, GABA,Antagonists, GABA,Antagonists, GABA Receptor,Antagonists, gamma-Aminobutyric Acid,Receptor Antagonists, GABA,gamma Aminobutyric Acid Antagonists

Related Publications

D A Brown, and M Galvan
February 1979, British journal of pharmacology,
D A Brown, and M Galvan
February 1979, British journal of pharmacology,
D A Brown, and M Galvan
November 1987, The American journal of physiology,
D A Brown, and M Galvan
April 1983, European journal of pharmacology,
D A Brown, and M Galvan
April 1960, The Japanese journal of physiology,
Copied contents to your clipboard!