Nitric oxide regulation of ADP-ribosylation of G proteins in hypertension. 1995

N L Kanagy, and J R Charpie, and R C Webb
University of Michigan Medical School, Ann Arbor 48109-0622, USA.

Nitric oxide stimulates endogenous ADP-ribosylation of cytosolic and membrane-bound proteins. Endogenous ADP-ribosyltransferases modify several intracellular proteins including the heterotrimeric GTP-binding proteins (G proteins). ADP-ribosylation of G proteins in vascular smooth muscle leads to increased activation of adenylate cyclase and decreased activation of phospholipase C leading to vasodilation. We hypothesize that in hypertension, chronically depressed endothelium-derived nitric oxide levels lead to decreased ADP-ribosylation of G proteins. This reduced ADP-ribosylation leads to vasoconstriction since activation of the G proteins by agonists is unopposed. Thus, disinhibition of G proteins, mediated by nitric oxide deficit, is responsible for the observed increased sensitivity to vasoconstrictor agonists in hypertension. This novel role for nitric oxide in hypertension will provide a new area of research for antihypertensive therapeutic intervention.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate

Related Publications

N L Kanagy, and J R Charpie, and R C Webb
January 1994, Life sciences,
N L Kanagy, and J R Charpie, and R C Webb
January 1997, Learning & memory (Cold Spring Harbor, N.Y.),
N L Kanagy, and J R Charpie, and R C Webb
April 1993, Biochemical and biophysical research communications,
N L Kanagy, and J R Charpie, and R C Webb
January 1995, FEBS letters,
N L Kanagy, and J R Charpie, and R C Webb
January 1991, Methods in enzymology,
N L Kanagy, and J R Charpie, and R C Webb
January 1994, Methods in enzymology,
N L Kanagy, and J R Charpie, and R C Webb
January 1989, Advances in experimental medicine and biology,
N L Kanagy, and J R Charpie, and R C Webb
February 1998, Free radical biology & medicine,
N L Kanagy, and J R Charpie, and R C Webb
December 1993, Neuroreport,
N L Kanagy, and J R Charpie, and R C Webb
February 1996, Brain research,
Copied contents to your clipboard!