Calculation models for determining the absorbed dose in water phantoms in off-axis planes of rectangular fields of open and wedged photon beams. 1995

P Storchi, and E Woudstra
Dr Daniel den Hoed Cancer Centre, Department of Clinical Physics, Rotterdam, The Netherlands.

Beam models are proposed for the calculation of the dose in off-axis planes of rectangular photon fields, when the data set used in the treatment planning system is based on the simple storage model of Milan and Bentley. For open beams the model separates the off-axis ratio into an envelope profile and two boundary profiles. The envelope profile gives the field intensity of the maximal position of the jaws and has rotational symmetry. The boundary profiles describe the boundaries of the field actually formed by the jaws. In the case of a wedged beam, the model also separates the off-axis ratio into envelope profiles and boundary profiles. To determine these profiles for the non-wedge direction from open beam profiles, the wedge thickness is converted to an equivalent water thickness. In the case of an asymmetric field, the boundary profiles are shifted to the field centre. Results of calculation with these models have been compared with measurements and the simple multiplication of profiles, which has often been used with the Milan-Bentley model. The new models agree within a few per cent with the measurements and are a great improvement compared to the simple multiplication of profiles.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

P Storchi, and E Woudstra
December 1999, Physics in medicine and biology,
P Storchi, and E Woudstra
January 1988, Medical physics,
P Storchi, and E Woudstra
January 1984, Medical physics,
P Storchi, and E Woudstra
November 1997, Medical physics,
P Storchi, and E Woudstra
March 1995, Physics in medicine and biology,
P Storchi, and E Woudstra
March 1994, Medical physics,
Copied contents to your clipboard!