The structure of the contractile apparatus in ultrarapidly frozen smooth muscle: freeze-fracture, deep-etch, and freeze-substitution studies. 1995

J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
Department of Cardiac Medicine, National Heart and Lung Institute, London, United Kingdom.

The structure of the smooth muscle contractile apparatus was studied using ultrarapid freezing followed by freeze substitution or by longitudinal freeze-fracture, deep-etch, and platinum-carbon replication. Freeze substitution minimises the detrimental effects of chemical fixation and freeze fracture eliminates them entirely whilst revealing the ultrastructure in three dimensions. Unidirectionally shadowed freeze-fracture replicas of ultrarapidly frozen, relaxed, intact smooth muscle showed a well-preserved actin filament structure the 5.5-nm repeat of the actin subunits was clearly observed. In transversely fractured tissue the thick filaments were revealed, with a distribution comparable to that seen in transverse sections of freeze-substituted muscle. Relaxed muscle permeabilised using Triton X-100 showed a similar structure to that of intact tissue after ultrarapid freezing and examination both by freeze fracture and by freeze examination both by freeze fracture and by freeze substitution; the ratios of actin to myosin were also comparable. In permeabilised, rigorised tissue the structure of the actomyosin complex was revealed in detail; this was especially clear in freeze-substituted muscle. A cross-bridge spacing of 38 nm was measured in freeze-fractured, deep-etched tissue. The structural detail revealed is compatible with a side polar model of the actomyosin interaction and with the sliding filament mechanism of muscle contraction.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze

Related Publications

J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
November 1995, Microscopy research and technique,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
July 1987, Circulation research,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
January 1992, Nippon Ganka Gakkai zasshi,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
January 1995, Methods in cell biology,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
April 1977, Journal of cell science,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
January 1980, International review of cytology,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
January 1999, Journal of electron microscopy,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
January 1982, Proceedings of the Western Pharmacology Society,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
October 1971, The Journal of physiology,
J L Hodgkinson, and T M Newman, and S B Marston, and N J Severs
December 2012, Journal of muscle research and cell motility,
Copied contents to your clipboard!