23Na and 31P nuclear magnetic resonance studies of ischemia-induced ventricular fibrillation. Alterations of intracellular Na+ and cellular energy. 1995

M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
Department of Medicine, University of Alabama at Birmingham, USA.

To clarify the role of Na+i, pHi, and high-energy phosphate (HEP) levels in the initiation and maintenance of ischemia-induced ventricular fibrillation (VF), interleaved 23Na and 31P nuclear magnetic resonance spectra were collected on perfused rat hearts during low-flow ischemia (51 minutes, 1.2 mL/g wet wt). When untreated, 50% of the hearts from normal (sham) rats and 89% of the hypertrophied hearts from aorticbanded (band) rats (P < .01 versus sham) exhibited VF. Phosphocreatine content was significantly higher in sham than band hearts during control perfusion (53.3 +/- 1.6 versus 39.8 +/- 2.0 mumol/g dry wt). Before VF at 20 minutes of ischemia, Na+i accumulation was greater in hearts that eventually developed VF than in hearts that did not develop VF for both band and sham groups (144% versus 128% of control in sham; P < .005) and was the strongest metabolic predictor of VF; ATP depletion was also greater for VF hearts in the sham group. Infusion of the Na(+)-H+ exchange inhibitor 5-(N,N-hexamethylene)-amiloride prevented VF in sham and band hearts; reduced Na+i accumulation but similar HEP depletion were observed compared with VF hearts before the onset of VF. Rapid changes in Na+i, pHi, and HEP began with VF, resulting in intracellular Na+i overload (approximately 300% of control) and increased HEP depletion. A delayed postischemic functional recovery occurred in VF hearts, which correlated temporally with the recovery of Na+i. In conclusion, alterations in Na+i were associated with spontaneous VF transitions, consistent with involvement of excess Na+i accumulation in VF initiation and maintenance and with previously reported alterations in Ca2+i with VF.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006332 Cardiomegaly Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES. Cardiac Hypertrophy,Enlarged Heart,Heart Hypertrophy,Heart Enlargement,Cardiac Hypertrophies,Enlargement, Heart,Heart Hypertrophies,Heart, Enlarged,Hypertrophies, Cardiac,Hypertrophies, Heart,Hypertrophy, Cardiac,Hypertrophy, Heart
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
September 1990, FEBS letters,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
January 1989, Renal physiology and biochemistry,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
February 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
September 1974, Biophysical journal,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
March 1994, Biochimica et biophysica acta,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
July 1993, Journal of anesthesia,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
January 1995, Basic research in cardiology,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
May 1981, European journal of biochemistry,
M M Pike, and C S Luo, and S Yanagida, and G R Hageman, and P G Anderson
January 1989, Renal physiology and biochemistry,
Copied contents to your clipboard!