Acidic pH rapidly increases immunoreactivity of glial fibrillary acidic protein in cultured astrocytes. 1995

T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
Department of Anatomy, University of Maryland School of Medicine, Baltimore 21201, USA.

Neuroepithelial progenitor cells from forebrains of newborn rat pups develop into "mature" astrocytes in an epidermal growth factor-containing medium free of serum (Von Visger et al: Exp Neurol 128:34, 1994). Eight-week-old "mature" astrocyte cultures on poly-L-lysine-coated dishes were exposed to an acidic medium (pH 5.8-6.0) for 2-6 h. Immunoreactivity for glial fibrillary acidic protein (GFAP) dramatically and rapidly increased; this immediate increase was not affected by pretreatment with cycloheximide. In further experiments we found that the increase in GFAP was undiminished for 24-48 h after the acid-treated astrocytes were returned to normal growth medium. The Ca2+ channel antagonists nifedipine and diltiazem attenuated the increase in GFAP immunoreactivity. These results suggest that extracellular acidosis may produce a rapid increase in GFAP immunoreactivity in astrocytes independent of de novo protein synthesis, possibly by increasing intracellular levels of free Ca2+ ions.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains

Related Publications

T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
July 1990, Journal of neuropathology and experimental neurology,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
August 1992, Neuroscience,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
October 1991, Molecular and chemical neuropathology,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
January 2004, Morfologiia (Saint Petersburg, Russia),
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
October 2005, Neuroscience and behavioral physiology,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
March 2002, Mechanisms of ageing and development,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
November 1995, Neuroscience letters,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
August 1972, Brain research,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
August 1997, Experimental neurology,
T H Oh, and G J Markelonis, and J R Von Visger, and B Baik, and M T Shipley
January 1984, Ultrastructural pathology,
Copied contents to your clipboard!