Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. 1995

M Camacho, and N Godessart, and R Antón, and M García, and L Vila
Inflammation Mediator Laboratory, Institute of Research of Santa Creu i Sant Pau Hospital, Barcelona, Spain.

Human umbilical vein endothelial cells (HUVEC) were treated with recombinant interleukin (IL)-1 beta, and the metabolism of exogenous linoleic acid was studied. High performance liquid chromatography, gas chromatography-mass spectrometry, and chiral analysis revealed that HUVEC enzymatically convert linoleic acid mainly into 13-(S)hydroxy-9(Z),11(E)-octadecadienoic (13-HODE) and 9-(R)hydroxy-10(E),12(Z)-octadecadienoic acids, which may isomerize toward all-trans compounds. IL-1 beta increased the formation of all octadecanoids in a time- and dose-dependent manner with similar EC50 (approximately 1 unit/ml). The apparent Km values of linoleic acid were 15.59 +/- 8.39 and 152.9 +/- 84 microM (p < 0.05) in IL-1 beta-treated cells and controls, respectively, indicating a higher substrate affinity in cells stimulated with IL-1 beta. Ratios of S/R enantiomers for the hydroxyoctadecanoids produced by untreated and IL-1 beta-treated cells were similar to those from isolated cyclooxygenases (COXs), whereas isolated 15-lipoxygenase yielded 13-HODE with a strict S configuration. The formation of octadecanoids was inhibited in a dose-dependent manner by several COX inhibitors in both controls and IL-1 beta-treated cells, COX2 selective inhibitors being more effective on IL-1 beta-treated cells than on controls. COX1 and COX2 protein levels increased less than 2-fold and 8-fold, respectively, after IL-1 beta treatment. The specificity of COX inhibitors was proven since they did not inhibit 13-HODE formation by human polymorphonuclear leukocytes. Overall, these results indicate that COXs are responsible for the oxidative metabolism of linoleic acid in HUVEC, and IL-1 beta increases it by inducing the expression of new enzyme, mainly COX2.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014471 Umbilical Veins Venous vessels in the umbilical cord. They carry oxygenated, nutrient-rich blood from the mother to the FETUS via the PLACENTA. In humans, there is normally one umbilical vein. Umbilical Vein,Vein, Umbilical,Veins, Umbilical
D019787 Linoleic Acid A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed) 9,12-Octadecadienoic Acid,Linoleate,9-trans,12-trans-Octadecadienoic Acid,Linoelaidic Acid,Linoelaidic Acid, (E,Z)-Isomer,Linoleic Acid, (E,E)-Isomer,Linoleic Acid, (Z,E)-Isomer,Linoleic Acid, (Z,Z)-Isomer,Linoleic Acid, (Z,Z)-Isomer, 14C-Labeled,Linoleic Acid, Ammonium Salt, (Z,Z)-Isomer,Linoleic Acid, Calcium Salt, (Z,Z)-Isomer,Linoleic Acid, Potassium Salt, (Z,Z)-Isomer,Linoleic Acid, Sodium Salt, (E,E)-Isomer,Linoleic Acid, Sodium Salt, (Z,Z)-Isomer,Linolelaidic Acid,cis,cis-9,12-Octadecadienoic Acid,trans,trans-9,12-Octadecadienoic Acid,9 trans,12 trans Octadecadienoic Acid,9,12 Octadecadienoic Acid,Acid, 9,12-Octadecadienoic

Related Publications

M Camacho, and N Godessart, and R Antón, and M García, and L Vila
June 1984, Journal of applied biochemistry,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
June 2004, Prostaglandins, leukotrienes, and essential fatty acids,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
January 2019, Stem cells international,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
July 1998, Chemico-biological interactions,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
January 1988, Chemico-biological interactions,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
March 1998, Circulation,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
May 1988, The Journal of clinical investigation,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
March 1994, Microvascular research,
M Camacho, and N Godessart, and R Antón, and M García, and L Vila
July 1985, Cell biology international reports,
Copied contents to your clipboard!