The GTPase Rab3a is associated with large dense core vesicles in bovine chromaffin cells and rat PC12 cells. 1995

F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
CNRS URA 1112, Institut de Biologie Physico-Chimique, Paris, France.

Small GTPases of the rab family control intracellular vesicle traffic in eukaryotic cells. Although the molecular mechanisms underlying the activity of the Rab proteins have not been elucidated yet, it is known that the function of these proteins is dependent on their precise subcellular localization. It has been suggested that Rab3a, which is mainly expressed in neural and endocrine cells, might regulate exocytosis. Recently, direct experimental evidence supporting this hypothesis has been obtained. Consistent with such a role for Rab3a in regulated exocytosis was the previously reported specific association of Rab3a with synaptic vesicles and with secretory granules in adrenal chromaffin cells. Since the latter result, based on subcellular fractionation, has been controversial, we have re-investigated the subcellular localization of this GTP-binding protein by using a combination of morphological techniques. Bovine chromaffin cells were labelled with an affinity-purified polyclonal anti-Rab3a antibody and analyzed by confocal microcopy. Rab3a was found to colocalize partially with dopamine beta-hydroxylase, a chromaffin granule marker. In agreement with this observation, immunoelectron microscopy revealed a specific staining of chromaffin granules. In addition to large dense core vesicles, some small vesicles were labelled. To eliminate the possibility that the staining was due to a Rab3a-related protein, we investigated by immunoelectron microscopy the localization of an epitope-tagged Rab3a expressed in rat PC12 cells. Secretory granules were specifically labelled, whereas clear microvesicles were not. These results provide further evidence supporting a specific association of the GTPase Rab3a with large dense core secretory vesicles.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle

Related Publications

F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
October 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
March 2021, Traffic (Copenhagen, Denmark),
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
July 2000, The EMBO journal,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
January 2002, Journal of molecular neuroscience : MN,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
April 1998, Cellular and molecular neurobiology,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
April 2012, Biochemical and biophysical research communications,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
April 2015, Journal of cell science,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
August 2016, Yi chuan = Hereditas,
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
October 1998, Methods (San Diego, Calif.),
F Darchen, and J Senyshyn, and W H Brondyk, and D J Taatjes, and R W Holz, and J P Henry, and J P Denizot, and I G Macara
March 1994, Neuroscience,
Copied contents to your clipboard!