Physiochemical characterization of low molecular weight heparin. 1995

D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Nuclear magnetic resonance spectroscopy (NMR), Raman spectroscopy, dynamic light scattering (DLS), and high performance exclusion chromatography (HPEC) were used to characterize two different commercial preparations of low molecular weight (LMW) heparin, produced either by peroxide cleavage or deaminative cleavage using nitrous acid. Proton NMR showed < 2% contamination by dermatan sulfate in the material produced by deaminative cleavage using nitrous acid and < 4% for the material produced by peroxide cleavage. The Raman spectra of the nitrous acid produced material showed an equivalent amount of O-sulfation to that in the material produced by peroxide, but about a 10% reduction in the content of N-sulfated glucosamine, as expected from the deamination reaction. DLS and HPEC indicated the presence of < 0.2% of very high molecular weight/aggregate material for the peroxide preparation compared to 1% for the nitrous acid-prepared material. The weight average molecular weight (Mw) determined from HPEC was 5900 Da for the nitrous acid-prepared material and 6850 Da for the peroxide-produced material. The number average molecular weight (Mn) calculated from this data was 5200 Da for the nitrous acid preparation and 5300 Da for the peroxide-produced material. In addition, the nitrous acid-prepared material exhibited a much narrower size distribution of oligomeric species, as evidenced by the polydispersity (Mw/Mn) of 1.1 for the nitrous acid-prepared material, as compared with a value of 1.3 for the peroxide-prepared material. These studies demonstrate that significant differences between preparations of LMW heparin can be resolved using these techniques. This is of critical importance in the design of quality assurance methods.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009608 Nitrous Acid Nitrous acid (HNO2). A weak acid that exists only in solution. It can form water-soluble nitrites and stable esters. (From Merck Index, 11th ed) Acid, Nitrous
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002626 Chemistry, Pharmaceutical Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use. Medicinal Chemistry,Chemistry, Pharmaceutic,Pharmaceutic Chemistry,Pharmaceutical Chemistry,Chemistry, Medicinal
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
January 1990, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
May 1985, La Revue du praticien,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
January 1988, La Revue de medecine interne,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
May 1994, The Medical clinics of North America,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
April 1998, RN,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
September 1997, Journal of vascular nursing : official publication of the Society for Peripheral Vascular Nursing,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
December 1997, Recenti progressi in medicina,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
July 1993, Thrombosis and haemostasis,
D H Atha, and B Coxon, and V Reipa, and A K Gaigalas
January 1992, Blood,
Copied contents to your clipboard!