Effect of long-term treatment with L-deprenyl on the age-dependent microanatomical changes in the rat hippocampus. 1995

Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
Sezione di Anatomia Umana, Università di Camerino, Italy.

Chronic treatment with L-deprenyl increases both mean and maximum life span and improves cognitive functions in the aged rat. The present study was designed to evaluate whether long-term treatment with L-deprenyl at a dosage not inhibiting the monoamine oxidase-B (MAO-B) (1.25 mg/kg/day) or inhibiting the enzyme activity (5 mg/kg/day) had any effect on the age-dependent microanatomical changes in the rat hippocampus. The hippocampus was chosen in view of its key role in learning and memory functions. Treatment with L-deprenyl started at 19 months and lasted until the 24th month of age. Age-matched untreated rats were used as a control, whereas 11-month-old rats were used as an adult reference group. The number of nerve cell and glial fibrillary acidic protein-immunoreactive astrocyte profiles in the CA1 and CA3 fields of the hippocampus and in the dentate gyrus was decreased and increased, respectively in aged compared with adult rats. Treatment with 5 mg/kg/day, but not with 1.25 mg/kg/day L-deprenyl increased the number of neuronal profiles and decreased the number of astrocytes in the hippocampus of aged rats. The density of zinc stores in the associative intrahippocampal pathway of mossy fibres, which was decreased in aged animals, was increased after treatment with the two doses of L-deprenyl. Lipofuscin accumulation within the cytoplasm of pyramidal neurons of the hippocampus was reduced dose dependently by L-deprenyl treatment. These results suggest that long-term treatment with L-deprenyl is able to counter the expression of age-dependent microanatomical changes in the rat hippocampus. These effects seem only partially correlated with the MAO-B inhibitory activity of L-deprenyl.

UI MeSH Term Description Entries
D008297 Male Males
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012642 Selegiline A selective, irreversible inhibitor of Type B monoamine oxidase that is used for the treatment of newly diagnosed patients with PARKINSON DISEASE, and for the treatment of depressive disorders. The compound without isomeric designation is Deprenyl. Deprenalin,Deprenil,Deprenyl,E-250,Eldepryl,Emsam,Humex,Jumex,L-Deprenyl,Selegiline Hydrochloride,Selegiline Hydrochloride, (R)-Isomer,Selegiline Hydrochloride, (R,S)-Isomer,Selegiline Hydrochloride, (S)-Isomer,Selegiline, (R)-Isomer,Selegiline, (R,S)-Isomer,Selegiline, (S)-Isomer,Selegyline,Yumex,Zelapar,E 250,E250
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
July 1996, Mechanisms of ageing and development,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
September 1994, Progress in neuro-psychopharmacology & biological psychiatry,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1994, Brain research bulletin,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1978, Journal of neural transmission,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1989, Archives of gerontology and geriatrics,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1990, Archives of gerontology and geriatrics,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
October 1985, Acta neurologica,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1988, Drugs under experimental and clinical research,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
June 2015, Brain research,
Y C Zeng, and S Bongrani, and E Bronzetti, and S Cadel, and A Ricci, and B Valsecchi, and F Amenta
January 1995, Life sciences,
Copied contents to your clipboard!