Mutations in the cytoplasmic domain of the fusion glycoprotein of Newcastle disease virus depress syncytia formation. 1995

T Sergel, and T G Morrison
Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA.

The role of the cytoplasmic domain of the Newcastle disease virus fusion protein in syncytia formation was explored by characterizing the intracellular processing and activities of proteins with deletions and point mutations in this region. Deletion of the entire domain (amino acids 523 to 553) resulted in a protein which was minimally proteolytically cleaved and had no syncytia forming activity. Deletion of the carboxy terminal half of the domain (amino acids 540 to 553) resulted in a protein that was normally processed but had no syncytia forming activity. Deletion of amino acids 547 to 553 resulted in a protein with approximately 30% wild-type levels of activity while deletion of amino acids 550 to 553 yielded a protein with wild-type activity. The results suggested that amino acids 540 to 550 are important for syncytia formation and this conclusion was supported by two internal deletions as well as point mutations in this region. Mutation of two cysteine residues in and adjacent to the transmembrane domain, which are potential sites for fatty acid acylation, had no effect on syncytia formation either singly or in combination.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009522 Newcastle disease virus The most well known avian paramyxovirus in the genus AVULAVIRUS and the cause of a highly infectious pneumoencephalitis in fowl. It is also reported to cause CONJUNCTIVITIS in humans. Transmission is by droplet inhalation or ingestion of contaminated water or food. Avian Paramyxovirus 1,Paramyxovirus 1, Avian
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

T Sergel, and T G Morrison
March 1985, Journal of virology,
T Sergel, and T G Morrison
January 2024, Results and problems in cell differentiation,
T Sergel, and T G Morrison
March 1984, European journal of biochemistry,
Copied contents to your clipboard!