Reactions of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1 aminomutase) with vinyl and acetylenic substrate analogues analysed by rapid scanning spectrophotometry. 1995

R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
School of Molecular and Medical Biosciences, University of Wales College of Cardiff, U.K.

The reactions occurring when glutamate-1-semialdehyde amino-transferase (glutamate-1-semialdehyde 2,1 aminomutase, EC 5.4.3.8) was treated with two potential mechanism-based inactivators, namely 4-aminohex-5-enoate and 4-aminohex-5-ynoate, have been investigated by monitoring rapid transient changes in the absorption spectrum of the enzyme's prosthetic group, pyridoxal 5'-phosphate. In both cases a short-lived chromophore absorbing maximally at about 500 nm was formed in a few milliseconds. In the case of the vinyl analogue (4-aminohex-5-enoate) this chromophore, considered to be a quinonoid intermediate, converted rapidly into the pyridoxamine phosphate form of the co-enzyme in a single turnover which was accompanied by negligible inactivation. However, slow inactivation of the enzyme by this compound was observed when the enzyme was made to undergo multiple turnovers by including the efficient aldehyde substrate, succinic semialdehyde. The acetylenic compound, aminohexynoate, produced more complex spectral changes with the consecutive formation of compounds absorbing maximally at 496 nm, 450 nm, 564 nm and 330 nm. The enzyme was 90% inactivated by aminohexynoate within 10 s and thereafter lost no further activity unless aldehyde substrate was added. Mechanisms and kinetic constants consistent with the observations are proposed for each compound. The observation that the acetylenic compound is a much more potent inactivator than its vinyl analogue is attributed to the occurrence of a conjugated allene as intermediate.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D007700 Kinetics The rate dynamics in chemical or physical systems.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000114 Acetylene The simplest two carbon alkyne with the formula HCCH. Ethyne
D000480 Alkynes Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2. Acetylenic Compounds,Alkyne,Acetylenes
D000599 Amino Acids, Diamino Amino Acids, Dibasic,Diamino Amino Acids,Dibasic Amino Acids,Acids, Diamino Amino,Acids, Dibasic Amino
D000614 Aminocaproates Amino derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the amino caproic acid structure. Aminocaproic Acids,Aminocaproic Acid Derivatives,Aminohexanoates,Aminohexanoic Acid Derivatives,Aminohexanoic Acids,Acid Derivatives, Aminocaproic,Acid Derivatives, Aminohexanoic,Acids, Aminocaproic,Acids, Aminohexanoic,Derivatives, Aminocaproic Acid,Derivatives, Aminohexanoic Acid
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
June 2016, Acta crystallographica. Section F, Structural biology communications,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
October 2003, The Journal of biological chemistry,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
September 2006, Proceedings of the National Academy of Sciences of the United States of America,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
May 2005, The Journal of biological chemistry,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
November 1991, Proceedings of the National Academy of Sciences of the United States of America,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
December 1996, The Biochemical journal,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
April 1992, Biochemistry,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
June 2018, Biochemical and biophysical research communications,
R J Tyacke, and R Contestabile, and B Grimm, and J L Harwood, and R A John
March 2000, Biochemistry,
Copied contents to your clipboard!