Mechanism of free radical-induced hemolysis of human erythrocytes: hemolysis by water-soluble radical initiator. 1995

Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
Pharmaceutical Institute, Tohoku University, Sendai, Japan.

Hemolysis of human erythrocytes induced by free radicals initiated from water-soluble, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) has been investigated. The formation of the radical detected as DMPO (5,5-dimethyl-1-pyrroline N-oxide) adduct depended on temperature and AAPH concentration in a similar manner as hemolysis. The curve for the formation of DMPO--radical adduct, however, did not correspond directly to the hemolysis curve. The product of thiobarbituric acid-reactive materials, which reflect the extent of lipid peroxidation, could not be related directly to the hemolysis curve, too. During the hemolysis, the fluidity of the erythrocyte membrane did not change in appearance. To study whether band 3 proteins participate in the hemolysis or not, eosin-5-maleimide (EMI)-labeled ghosts were incubated in the presence of AAPH. High molecular weight band 3 was formed, and the induced circular dichrosim spectrum of the bound EMI was changed, indicating a conformational change of band 3. It was observed that ascorbic acid suppressed the hemolysis and the oxidation of band 3 dose dependently to produce an induction period. This result shows that specifically blocking band 3 oxidation inhibits the hemolysis, despite lipid peroxidation. Further, it was observed that the EMI-labeled erythrocytes revealed distinct clusters by incubation with AAPH. This means a redistribution of band 3 proteins to form hemolytic holes in the membrane. However, the time course of the conformational change of band 3 during the redistribution was not also correspondent to the hemolysis curve. These results indicate that either lipid peroxidation or redistribution of oxidized band 3 is not attributed only by itself to the hemolysis. Thus, the hemolysis was interpreted by a simple competitive reaction model between lipid peroxidation and redistribution of oxidized band 3. This model explained well the hemolysis curves.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses

Related Publications

Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
March 1998, Biological & pharmaceutical bulletin,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
August 2002, Biochimica et biophysica acta,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
January 2007, Cell biochemistry and function,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
March 2007, Bioorganic & medicinal chemistry,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
January 2009, Journal of biochemical and molecular toxicology,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
December 1988, The Journal of biological chemistry,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
September 2001, International journal of cancer,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
January 2007, Cell biochemistry and function,
Y Sato, and S Kamo, and T Takahashi, and Y Suzuki
May 1993, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!