Alpha-Chain cross-linking in fibrin(ogen) Marburg. 1995

J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA.

The fibrinogen structural variant, Marburg (A alpha 1-460B beta gamma)2, is comprised of normal B beta and gamma chains but contains severely truncated A alpha chains that are missing approximately one half of their factor XIIIa cross-linking domain. Immunochemical studies of fibrin(ogen) Marburg were conducted to characterize the degree to which deletion of a defined A alpha-chain segment, A alpha 461-610, can affect the process of fibrin stabilization, ie, the factor XIIIa-mediated covalent interaction that occurs between alpha chains of neighboring fibrin molecules and between alpha chains and alpha 2 antiplasmin (alpha 2PI). The ability of Marburg (and control) alpha chains to serve as a substrate for factor XIIIa and undergo cross-linking was examined in an in vitro plasma clotting system. The capacity for alpha-chain cross-linking was evaluated both as the covalent incorporation of the small synthetic peptide, NQEQVSPLTLLK (which represents the first 12 amino acids of alpha 2PI and includes the factor XIIIa-sensitive glutamine residue responsible for the cross-linking of alpha 2PI to fibrin), and as the appearance of native (ie, natural), high-molecular-weight, cross-linked alpha-chain species. Antibodies specific for the (A)alpha and gamma/gamma-gamma chains of fibrin(ogen) and for the peptide and its parent protein, alpha 2PI (68 kD), were used as immunoblotting probes to visualize the various cross-linked products formed during in vitro clotting. Recalcification of Marburg plasma in the presence of increasing concentrations of peptide resulted in the formation of peptide-decorated Marburg alpha-chain monomers. Their size at the highest peptide concentration examined indicated the incorporation of a maximum of 3 to 4 mol of peptide per mole of alpha-chain. In the absence of alpha 2PI 1-12 peptide, the alpha chains of Marburg fibrin cross-linked to form oligomers and polymers, as well as heterodimers that included alpha 2PI. Both the peptide-decorated monomers and the native cross-linked alpha-chain species of Marburg fibrin were smaller than their control plasma counterparts, consistent with the truncated structure of the parent Marburg A alpha chain. Collectively, the findings indicate that, although deletion of the A alpha chain region no. 461-610 in fibrinogen Marburg prevents formation of an extensive alpha polymer network (presumably due to the absence of critical COOH-terminal lysine residues), it does not interfere with initial events in the fibrin stabilization process, namely, factor XIII binding and the ability of alpha chains to undergo limited cross-linking to one another and to alpha 2PI.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
January 1981, Thrombosis research,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
August 2000, The Journal of biological chemistry,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
December 1988, The Biochemical journal,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
August 1996, The Journal of biological chemistry,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
December 1976, Thrombosis and haemostasis,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
January 1970, Biochemical and biophysical research communications,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
July 1990, Thrombosis research,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
September 2006, Blood,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
February 1980, The Journal of clinical investigation,
J H Sobel, and I Trakht, and H Q Wu, and S Rudchenko, and R Egbring
August 2012, Journal of biomedical materials research. Part B, Applied biomaterials,
Copied contents to your clipboard!