NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. 1995

G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
Neurology Service, Massachusetts General Hospital, Boston 02114, USA.

N-Methyl-D-aspartate (NMDA) receptors are enriched in the neostriatum and are thought to mediate several actions of glutamate including neuronal excitability, long-term synaptic plasticity, and excitotoxic injury. NMDA receptors are assembled from several subunits (NMDAR1, NMDAR2A-D) encoded by five genes; alternative splicing gives rise to eight isoforms of subunit NMDAR1. We studied the expression of NMDA receptor subunits in neurochemically identified striatal neurons of adult rats by in situ hybridization histochemistry using a double-labeling technique. Enkephalin-positive projection neurons, somatostatin-positive interneurons, and cholinergic interneurons each have distinct NMDA receptor subunit phenotypes. Both populations of striatal interneurons examined express lower levels of NMDAR1 and NMDAR2B subunit mRNA than enkephalin-positive neurons. The three striatal cell populations differ also in the presence of markers for alternatively spliced regions of NMDAR1, suggesting that interneurons preferentially express NMDAR1 splice forms lacking one (cholinergic neurons) or both (somatostatin-positive neurons) alternatively spliced carboxy-terminal regions. In addition, somatostatin- and cholinergic-, but not enkephalin-positive neurons express NMDAR2D mRNA. Thus, these striatal cell populations express different NMDAR-subunit mRNA phenotypes and therefore are likely to display NMDA channels with distinct pharmacological and physiological properties. Differences in NMDA receptor expression may contribute to the relative resistance of striatal interneurons to the neurotoxic effect of NMDA receptor agonists.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
May 1998, Journal of neurochemistry,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
April 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
December 2000, Neuroreport,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
March 1995, Brain research. Molecular brain research,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
April 1999, Annals of the New York Academy of Sciences,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
September 1994, Brain research. Molecular brain research,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
March 1995, Glia,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
July 2001, Journal of neurochemistry,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G B Landwehrmeyer, and D G Standaert, and C M Testa, and J B Penney, and A B Young
January 1994, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
Copied contents to your clipboard!