Omega-grammotoxin SIA blocks multiple, voltage-gated, Ca2+ channel subtypes in cultured rat hippocampal neurons. 1995

T M Piser, and R A Lampe, and R A Keith, and S A Thayer
Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.

Omega-Grammotoxin SIA is a peptide isolated from tarantula venom on the basis of its ability to block the voltage-gated Ca2+ channels that mediate glutamate release. To determine the Ca2+ channel subtype selectivity of omega-grammotoxin SIA, whole-cell Ba2+ current (IBa) was measured in cultured rat hippocampal neurons. Selective Ca2+ channel blockers were used to identify components of IBa mediated by Ca2+ channel subtypes. omega-Agatoxin IVA at 30 nM, 1 microM omega-conotoxin GVIA, and 3 microM omega-contoxin MVIIC, applied consecutively, each elicited a fractional increase in the cumulative block of IBa, identifying components of IBa mediated by P-, N-, and Q-type calcium channels. omega-Grammotoxin at 1 microM, a maximally effective concentration, blocked 52% of IBa. omega-Conotoxin MVIIC and the combination of omega-conotoxin GVIA and micromolar omega-agatoxin IVA blocked 52% and 54% of IBa, respectively, and block of IBa by omega-grammotoxin SIA was mutually occlusive of block of IBa by either treatment, both of which block N-, P-, and Q-type Ca2+ channels. The L channel blocker nimodipine produced identical block of IBa in the presence and absence of omega-grammotoxin SIA. These results indicate that omega-grammotoxin SIA blocks N-, P-, and Q-type but not L-type voltage-gated calcium channels. Block of IBa by omega-grammotoxin SIA was faster in onset and less sensitive to external divalent cation concentrations than was block by omega-conotoxin MVIIC, and it was rapidly and substantially reversible. Rapid onset, relative insensitivity to divalent cation concentrations, and reversibility render omega-grammotoxin SIA a useful tool for inhibition of neuronal voltage-gated Ca2+ channels.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

T M Piser, and R A Lampe, and R A Keith, and S A Thayer
August 2003, Acta pharmacologica Sinica,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
March 2003, Glia,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
February 2001, British journal of pharmacology,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
January 2005, European journal of pharmacology,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
December 2012, Sheng li xue bao : [Acta physiologica Sinica],
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
February 2000, Acta pharmacologica Sinica,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
May 2005, The European journal of neuroscience,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
September 2016, Pain,
T M Piser, and R A Lampe, and R A Keith, and S A Thayer
August 2011, Neuroscience letters,
Copied contents to your clipboard!