Specific cellular sites of action of the environmental pollutant, lead, have not been completely defined. The present investigations were conducted to test the hypothesis that lead exposure perturbs glucocorticoid-mediated effects in hormonal target tissues. The cell culture model chosen for these investigations was the effects of lead on glucocorticoid-regulated tyrosine aminotransferase (TAT) specific activity in the H4-II-C3 hepatoma cells. Cells were treated with 300 nM-10 microM lead acetate for 24 or 48 h in absence or presence of the inducing agent, dexamethasone. Lead dose-dependently inhibited TAT specific activity up to 52% and 61% following 24 and 48 h lead treatments, respectively. These treatment times and concentrations of lead acetate did not significantly alter total cell numbers, [3H]thymidine incorporation or trypan blue exclusion. Glucocorticoid receptor-binding studies yielded a Kd = 8.3 nM and a Bmax = 290 fmol/mg protein in untreated cells versus a Kd = 9.2 nM and Bmax = 262 fmol/mg protein in cells exposed to 10 microM lead acetate for 48 h. Treatment with lead did not significantly perturb uptake of the inducing glucocorticoids or initial cytosolic receptor-binding events. To sustain induced levels of TAT, glucocorticoid must be continuously present. Following steroid withdrawal, enzyme de-induction was significantly altered in lead-treated cells. At 6 h following dexamethasone withdrawal, TAT levels had decreased to 51% of maximum in sodium acetate-treated cells. This was significantly reduced to 33% of maximum in lead acetate-treated cells. Lead treatment of HTC cells was also shown to ameliorate PMA amplification of dexamethasone-induced TAT activity. Taken together, these results suggest that acute exposure of cells to lead may inhibit processes involved in glucocorticoid-mediated enzyme induction within the hormonal target cell. Results suggest that lead may be acting to increase the turnover of TAT by actions at the transcription, translation and/or posttranslational level. Lead may also be affecting PKC-mediated phosphorylations in the glucocorticoid-TAT signal transduction system.