The acute effect of lead acetate on glucocorticoid regulation of tyrosine aminotransferase in hepatoma cells. 1995

A S Heiman, and L E Tonner
College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee 32307, USA.

Specific cellular sites of action of the environmental pollutant, lead, have not been completely defined. The present investigations were conducted to test the hypothesis that lead exposure perturbs glucocorticoid-mediated effects in hormonal target tissues. The cell culture model chosen for these investigations was the effects of lead on glucocorticoid-regulated tyrosine aminotransferase (TAT) specific activity in the H4-II-C3 hepatoma cells. Cells were treated with 300 nM-10 microM lead acetate for 24 or 48 h in absence or presence of the inducing agent, dexamethasone. Lead dose-dependently inhibited TAT specific activity up to 52% and 61% following 24 and 48 h lead treatments, respectively. These treatment times and concentrations of lead acetate did not significantly alter total cell numbers, [3H]thymidine incorporation or trypan blue exclusion. Glucocorticoid receptor-binding studies yielded a Kd = 8.3 nM and a Bmax = 290 fmol/mg protein in untreated cells versus a Kd = 9.2 nM and Bmax = 262 fmol/mg protein in cells exposed to 10 microM lead acetate for 48 h. Treatment with lead did not significantly perturb uptake of the inducing glucocorticoids or initial cytosolic receptor-binding events. To sustain induced levels of TAT, glucocorticoid must be continuously present. Following steroid withdrawal, enzyme de-induction was significantly altered in lead-treated cells. At 6 h following dexamethasone withdrawal, TAT levels had decreased to 51% of maximum in sodium acetate-treated cells. This was significantly reduced to 33% of maximum in lead acetate-treated cells. Lead treatment of HTC cells was also shown to ameliorate PMA amplification of dexamethasone-induced TAT activity. Taken together, these results suggest that acute exposure of cells to lead may inhibit processes involved in glucocorticoid-mediated enzyme induction within the hormonal target cell. Results suggest that lead may be acting to increase the turnover of TAT by actions at the transcription, translation and/or posttranslational level. Lead may also be affecting PKC-mediated phosphorylations in the glucocorticoid-TAT signal transduction system.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

A S Heiman, and L E Tonner
October 1981, Journal of biochemistry,
A S Heiman, and L E Tonner
March 1970, Proceedings of the National Academy of Sciences of the United States of America,
A S Heiman, and L E Tonner
November 1977, The Journal of biological chemistry,
A S Heiman, and L E Tonner
January 1979, Monographs on endocrinology,
Copied contents to your clipboard!