Role of basic residues in the proteolytic activation of Sendai virus fusion glycoprotein. 1995

B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA.

Cleavage activation of the Sendai virus (Fushimi strain) fusion (F) protein was analyzed by site-directed mutagenesis of the amino acids proximal to the highly conserved fusion peptide. In addition, the functional properties of the wild-type and mutant proteins were examined to determine their ability to elicit the formation of syncytia when co-expressed with the hemagglutinin-neuraminidase (HN) glycoprotein. Viral genes were expressed from recombinant T7 transcription vectors (pT7/T3 plasmids) containing F or HN genes, after transfection into cells previously infected with a recombinant vaccinia virus expressing T7 RNA polymerase (vTF7-3). The wild-type F protein sequence (112VPQSRF) which contains a monobasic cleavage activation site was altered to include a tribasic, 112VPRKRF (mB3), or a pentabasic sequence, 112RRRKRF (mB5) adjacent to the fusion peptide. Although addition of basic residues to the normal protein sequence resulted in enhanced cleavage activation of the mB3 and mB5 proteins, only the mB5 protein was able to induce syncytia formation in CV-1 or HeLa T4 cells. Further analysis by the introduction of acidic residues upstream of the cleavage activation site was performed to determine whether increased hydrophilicity of the surrounding residues might contribute to cleavage activation. The mutants examined, mAcB1 (104NDDEENAGVPQSRF), mAcB3 (104NDDEENAGVPRKRF), and mAcB5 (104NDDEENAGRRRKRF) all contained DEE in replacement for the wild-type TTQ sequence (104NDTTQNAGVPQSRF). Analysis showed that only mAcB3 was efficiently cleaved by the endogenous cellular proteases, while mAcB1 was minimally cleaved, and mAcB5 not at all. Consequently, only the mAcB3 mutant was able to support fusion of CV-1 or HeLa T4 cells when co-expressed with HN.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D011498 Protein Precursors Precursors, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014760 Viral Fusion Proteins Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells. Fusion Proteins, Viral,Viral Fusion Glycoproteins,F Protein (Sendai Virus),F Protein Measles Virus,F Protein Newcastle Disease Virus,F Protein SV,F-Glycoprotein SV,F1 Polypeptide (Paramyxovirus),Fusion Glycoprotein, Viral,Fusion VP1 Protein,Glycoprotein, Viral Fusion,Measles Fusion Protein,Mumps Virus Fusion Protein,Paramyxovirus Fusion Protein,Sendai Virus Fusion Protein,Viral Fusion-GP,Virus Fusion Proteins,Fusion Glycoproteins, Viral,Fusion Protein, Measles,Fusion Protein, Paramyxovirus,Fusion Proteins, Virus,Fusion-GP, Viral,Glycoproteins, Viral Fusion,Proteins, Virus Fusion,VP1 Protein, Fusion,Viral Fusion GP,Viral Fusion Glycoprotein

Related Publications

B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
June 1993, Virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
August 1990, Journal of virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
May 1994, Journal of virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
January 1983, Archives of virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
November 1977, Nature,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
April 1987, Virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
September 1997, Journal of virology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
March 1995, Biochemical and biophysical research communications,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
January 1999, Journal of molecular biology,
B R Heminaway, and Y Yang, and Y Tanaka, and M Panin, and Y T Huang, and M S Galinski
June 1998, Journal of biochemistry,
Copied contents to your clipboard!