Modulation of Ca2+ sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation. 1995

A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
II. Physiologisches Institut, Universität Heidelberg, Germany.

Genistein, a potent tyrosine kinase inhibitor, inhibits contraction of several types of smooth muscle, suggesting that protein tyrosine phosphorylation may be an important regulatory mechanism for smooth muscle contraction. We suspected that one site between activation of smooth muscle and contraction which might be modulated by protein tyrosine phosphorylation involved mechanisms for control of Ca2+ sensitivity. Since smooth muscle permeabilized with staphylococcal alpha-toxin permits direct assessment of agonist-induced Ca2+ sensitivity, we studied the effects of genistein on potential coupling between tyrosine phosphorylation and Ca2+ sensitivity in permeabilized ileal smooth muscle. Results show that contraction of intact preparations with carbachol is markedly and reversibly inhibited by 40% at 4 micrograms genistein/ml and by 60% at 20 micrograms genistein/ml. Permeabilized preparations that are contracted with a submaximal [Ca2+] in the presence of GTP relax when genistein is added to the medium. Genistein also reversibly inhibits contractions induced in permeabilized muscle with either a submaximal or maximal [Ca2+] in the presence of GTP, as well as receptor-coupled activation of Ca2+ sensitization with 10 microM carbachol/10 microM GTP. Activation of permeabilized preparations at pCa 4.6 in the presence of 100 microM GTP promotes time-dependent tyrosine phosphorylation of several substrates. Both phosphorylation and force are inhibited by genistein. However, relatively high levels of myosin light chain phosphorylation persist during genistein-induced inhibition of Ca2+ sensitivity. In contrast, genistein has no effect on Ca(2+)-activated contraction in Triton-skinned preparations in either the presence or the absence of GTP. This shows that it does not directly inhibit actin-myosin interaction and suggests that its target(s) may be a cytosolic or membrane-bound regulatory protein(s) that is leached from the preparations during Triton-skinning. Taken together, these new data suggest that (a) tyrosine phosphorylation of one or more substrates may be coupled to mechanisms which regulate Ca2+ sensitivity and (b) the inhibitory effects of genistein are probably due to inhibition of agonist-induced Ca2+ sensitivity.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
November 1994, Canadian journal of physiology and pharmacology,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
December 2000, Life sciences,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
August 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
January 1991, Advances in experimental medicine and biology,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
October 1990, The Journal of physiology,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
November 1997, Molecular and cellular biochemistry,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
January 1999, The American journal of physiology,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
March 1993, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
February 2004, The Journal of biological chemistry,
A Steusloff, and E Paul, and L A Semenchuk, and J Di Salvo, and G Pfitzer
July 2002, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!