Structure of the human aggrecan gene: exon-intron organization and association with the protein domains. 1995

W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
Department of Orthopaedic Surgery, Columbia University, New York, NY 10032, USA.

The complete exon-intron organization of the human aggrecan gene has been defined, and the exon organization has been compared with the individual domains of the protein core. A yeast artificial chromosome containing the aggrecan gene was selected from the Centre d'Etude du Polymorphisme Humaine yeast artificial chromosome library. A cosmid sulibrary was created from this, and direct sequencing of individual cosmids was used to provide the exon-intron organization. The human aggrecan gene was found to be composed of 19 exons ranging in size from 77 to 4224 bp. Exon 1 is non-coding, whereas exons 2-19 code for a protein core of 2454 amino acids with a calculated mass of 254379 Da. Intron 1 of the gene is at least 13 kb. Overall, the sizes of the 18 introns range from 0.5 to greater than 13 kb. Each intron begins with a GT and ends with an AG, thus obeying the GT/AG rule of splice-junction sequences. The entire coding region is contained in 39.4 kb of the gene. The organization of exons is strongly related to the specific domains of the protein core. The A loop of G1 and the interglobular domain are encoded by exons 3 and 7 respectively. The B and B' loops of G1 are encoded by exons 4-6, and those of G2 are encoded by exons 8-10. These sets of exons, coding for the B and B' loops, are identical in size and organization. This is supported by the intron classes associated with these exons. Exon 11 codes for the 5' half of the keratan sulphate-rich region, and exon 12 codes for the 3' half of the keratan sulphate-rich region as well as the entire chondroitin sulphate-rich region. G3 is encoded by exons 13-18, including the alternatively spliced epidermal growth factor-like and complement regulatory protein-like domains. The correspondence between the exon organization and the protein domains argues strongly for modular assembly of the aggrecan gene.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix

Related Publications

W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
October 2001, European journal of endocrinology,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
October 1997, Genomics,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
February 2000, Gene,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
December 1996, Biochemical and biophysical research communications,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
November 1988, Genetika,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
October 1999, Matrix biology : journal of the International Society for Matrix Biology,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
April 1992, European journal of biochemistry,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
September 2009, Nature structural & molecular biology,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
January 2000, Neuropharmacology,
W B Valhmu, and G D Palmer, and P A Rivers, and S Ebara, and J F Cheng, and S Fischer, and A Ratcliffe
May 1990, European journal of biochemistry,
Copied contents to your clipboard!