Ameloblasts and odontoblasts, target-cells for 1,25-dihydroxyvitamin D3: a review. 1995

A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
INSERM U120, Hôpital Robert Debré, Université Paris VI, France.

The basic features on the vitamin D endocrine system, synthesis of the main metabolite 1,25-dihydroxyvitamin D3 (1,25) and its genomic action mediated via the vitamin D receptor (VDR), are reviewed. Calbindin-D9k, calbindin-D28k and osteocalcin are presented as the most-extensively investigated vitamin D-dependent calcium-binding proteins. The action of 1,25 on the basic process of proliferation and differentiation is introduced. Then, the basis of the systemic theory of vitamin D action on teeth (clinical and experimental data and the dissimilar distribution of VDR and of potential vitamin D-dependent proteins in dental cells) are exposed. Finally, the data obtained with calbindin-D9k, calbindin-D28k, osteocalcin and VDR, which supports the theory that ameloblasts and odontoblasts are target-cells for 1,25 is presented. As a perspective, a cross-survey of the 1,25 and tooth-related literature is proposed which may indicate potential target-genes for 1,25 in teeth as done previously for calbindins-D.

UI MeSH Term Description Entries
D009804 Odontoblasts The mesenchymal cells which line the DENTAL PULP CAVITY and produce DENTIN. They have a columnar morphology in the coronal pulp but are cuboidal in the root pulp, or when adjacent to tertiary dentin. Odontoblast
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000565 Ameloblasts Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonski's Dictionary of Dentistry, 1992) Ameloblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014070 Tooth One of a set of bone-like structures in the mouth used for biting and chewing. Teeth
D015675 Osteocalcin Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX. Bone Gla Protein,Calcium-Binding Protein, Vitamin K-Dependent,Gla Protein, Bone,Vitamin K-Dependent Bone Protein,4-Carboxyglutamic Protein, Bone,Bone gamma-Carboxyglutamic Acid Protein,4 Carboxyglutamic Protein, Bone,Bone 4-Carboxyglutamic Protein,Bone gamma Carboxyglutamic Acid Protein,Calcium Binding Protein, Vitamin K Dependent,Protein, Bone 4-Carboxyglutamic,Protein, Bone Gla,Vitamin K Dependent Bone Protein
D018167 Receptors, Calcitriol Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors. Calcitriol Receptors,Cholecalciferol Receptors,Receptors, Vitamin D,Vitamin D 3 Receptors,Vitamin D Receptors,1,25-Dihydroxycholecalciferol Receptor,1,25-Dihydroxycholecalciferol Receptors,1,25-Dihydroxyvitamin D 3 Receptor,1,25-Dihydroxyvitamin D3 Receptor,1,25-Dihydroxyvitamin D3 Receptors,Calcitriol Receptor,Receptors, 1,25-Dihydroxyvitamin D 3,Receptors, Cholecalciferol,Receptors, Vitamin D 3,Receptors, Vitamin D3,Vitamin D 3 Receptor,Vitamin D Receptor,Vitamin D3 Receptor,Vitamin D3 Receptors,1,25 Dihydroxycholecalciferol Receptor,1,25 Dihydroxycholecalciferol Receptors,1,25 Dihydroxyvitamin D 3 Receptor,1,25 Dihydroxyvitamin D3 Receptor,1,25 Dihydroxyvitamin D3 Receptors,D Receptor, Vitamin,D Receptors, Vitamin,D3 Receptor, 1,25-Dihydroxyvitamin,D3 Receptor, Vitamin,D3 Receptors, 1,25-Dihydroxyvitamin,D3 Receptors, Vitamin,Receptor, 1,25-Dihydroxycholecalciferol,Receptor, 1,25-Dihydroxyvitamin D3,Receptor, Calcitriol,Receptor, Vitamin D,Receptor, Vitamin D3,Receptors, 1,25-Dihydroxycholecalciferol,Receptors, 1,25-Dihydroxyvitamin D3
D064026 Calbindins Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D. Calbindin
D064030 S100 Calcium Binding Protein G A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D. Calbindin 3,Calbindin D9K,Calbindin-D9K,Calcium Binding Protein, Vitamin D Dependent,Calcium-Binding Protein, Vitamin D-Dependent,Cholecalcin,IMCal Protein,Intestinal Membrane Calcium-Binding Protein,Vitamin D-Dependent Calcium-Binding Protein,Intestinal Membrane Calcium Binding Protein,Vitamin D Dependent Calcium Binding Protein

Related Publications

A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
January 1980, Cell and tissue research,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
March 1982, Science (New York, N.Y.),
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
July 1987, The American journal of physiology,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
January 1981, Hormone research,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
January 1983, Endocrinology,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
January 1983, Journal of dental research,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
April 1988, Endocrinology,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
July 1983, Journal of steroid biochemistry,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
March 1985, Endocrinology,
A Berdal, and P Papagerakis, and D Hotton, and I Bailleul-Forestier, and J L Davideau
April 1988, Endocrinology,
Copied contents to your clipboard!