Hypothalamic excitatory amino acid system during sexual maturation in female rats. 1995

J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
Departamento de FisiologĂ­a, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Argentina.

The present results indicate that during sexual maturation the APOA-MBH from rats of 30 days of age released significantly higher quantities of GnRH than the tissue from 16-day-old rats (P < 0.01). The addition of NMDA, an agonist of the excitatory amino acids system (EAAs), to the medium after 30 min of incubation significantly increased (P < 0.01) the GnRH release in normal rats of both ages and this increase was significantly (P < 0.01) higher in 30-day-old rats (to 661%) than in rats of 16 days of age (to 273%). The administration of estrogen-progesterone (EP) to rats of 16 days of age did not modify the GnRH release response to NMDA. On the contrary, at 30 days of age EP administration significantly potentiated the GnRH release response to NMDA since while in the control group NMDA increased the GnRH release to 630%, in the EP-pretreated group this was to around 4700% (P < 0.01). EP pretreatment of prepubertal rats decreases the hypothalamic release of aspartate and glutamate, the excitatory amino acids involved in NMDA neurotransmission and glycine but increases EAAs release in peripubertal rats. On the basis of these results it is proposed that the increase in EAAs release by the hypothalamus is directly connected with the onset of puberty and that the maturation of the positive feedback effect of ovarian hormones on gonadotropin secretion is related to the maturation of the capacity of EP to increase hypothalamic EAAs. Before this maturational event EP inhibits EAAs release as well as gonadotropin release (prepubertal rats). NMDA receptor stimulation leads to a positive mechanism which increases the release of Asp and Glu from APOA-MBH both in prepubertal and peripubertal rats, but EP potentiates this mechanism only in peripubertal rats. This could be an additional neuroendocrine mechanism involved in the increase of gonadotropin during sexual maturation which induces the onset of puberty and the preovulatory discharge of these pituitary hormones.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005260 Female Females
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
December 1961, The American journal of physiology,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
September 1985, Brain research,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
April 1992, The American journal of physiology,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
February 1974, Journal of reproduction and fertility,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
January 1960, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
June 1990, The Japanese journal of psychiatry and neurology,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
August 1991, The American journal of physiology,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
February 1993, Molecular and cellular neurosciences,
J A Moguilevsky, and S Carbone, and B Szwarcfarb, and D Rondina, and P Scacchi
April 1978, Endokrinologie,
Copied contents to your clipboard!