Sex hormone-binding globulin/androgen-binding protein: steroid-binding and dimerization domains. 1995

G L Hammond, and W P Bocchinfuso
Department of Obstetrics and Gynecology, University of Western Ontario, London, Canada.

Plasma sex hormone-binding globulin (SHBG) and testicular androgen-binding protein (ABP) are homodimeric glycoproteins that share the same primary structure, and differ only with respect to the types of oligosaccharides associated with them. The biological significance of these differences is not understood, but enzymatically deglycosylated SHBG and a non-glycosylated SHBG mutant both bind steroids normally. Various affinity-labelling experiments, and studies of recombinant SHBG mutants have indicated that a region encompassing and including Met-139 in human SHBG represents an important component of its steroid-binding site. Analyses of chimeric proteins comprising various portions of human SHBG and rat ABP have also indicated that residues important for the much higher affinity of human SHBG for steroid ligands are probably located within the N-terminal portion of these molecules. Recent studies of SHBG mutants have confirmed this, and a deletion mutant containing only the first 205 N-terminal residues of human SHBG has been produced which dimerizes and binds steroids appropriately. The introduction of amino-acid substitutions between Lys-134 and Phe-148 of SHBG has also indicated that residues including and immediately N-terminal of Met-139 may influence steroid-binding specificity, while those immediately C-terminal of Met-139 represent at least a part of the dimerization domain. These studies have also demonstrated that dimerization is induced by the presence of steroid ligand in the binding site, and that divalent cations play an important role in this process. Together, these data have led us to conclude that SHBG is a modular protein, which comprises an N-terminal steroid-binding and dimerization domain, and a C-terminal domain containing a highly-conserved consensus sequence for glycosylation that may be required for other biological activities, such as cell-surface recognition.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000727 Androgen-Binding Protein Carrier proteins produced in the Sertoli cells of the testis, secreted into the seminiferous tubules, and transported via the efferent ducts to the epididymis. They participate in the transport of androgens. Androgen-binding protein has the same amino acid sequence as SEX HORMONE-BINDING GLOBULIN. They differ by their sites of synthesis and post-translational oligosaccharide modifications. Androgen Binding Protein,Binding Protein, Androgen,Protein, Androgen Binding,Protein, Androgen-Binding
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

G L Hammond, and W P Bocchinfuso
January 1994, Vitamins and hormones,
G L Hammond, and W P Bocchinfuso
September 1983, The Journal of clinical endocrinology and metabolism,
G L Hammond, and W P Bocchinfuso
April 1993, Molecular endocrinology (Baltimore, Md.),
G L Hammond, and W P Bocchinfuso
September 1994, The Journal of steroid biochemistry and molecular biology,
G L Hammond, and W P Bocchinfuso
January 2000, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Copied contents to your clipboard!