Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity. 1995

B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin 78712-1074, USA.

Monoamine oxidase B (MAO B), an integral protein of the outer mitochondrial membrane, catalyzes the oxidative deamination of various neuroactive and vasoactive amines. A covalently bound FAD cofactor at Cys-397 of human MAO B is required for the oxidation of the amine substrates. In addition to the covalent binding site, MAO B also contains a noncovalent FAD binding region (residues 6-34) known as the dinucleotide binding motif. Previously, we have shown that Glu-34 is required for catalytic activity, presumably by forming a hydrogen bond between the carboxylate group of glutamate and the 2'-hydroxyl group of ribose in the AMP moiety of FAD. In this work, we have identified a third FAD binding site in MAO B (residues 39-46) by sequence comparisons to other flavoenzymes. The conserved sequence contains a tyrosine residue (Tyr-44) which, based on the X-ray crystal structure of ferredoxin-NADP+ reductase, is postulated to participate in FAD binding through van der Waals contact with the isoalloxazine ring and a hydrogen bond to the 3'-hydroxy of the ribityl moiety. To test the postulated role of this tyrosine residue, site-directed mutants that encode substitutions at Tyr-44 were prepared and expressed in mammalian COS-7 cells. Variant MAO B enzymes were then characterized with respect to enzymatic activity and [14C]FAD incorporation. Substitution of tyrosine with phenylalanine had no effect on MAO B activity or the level of [14C]FAD incorporation compared to the wild-type enzyme, indicating that the hydroxyl group of the tyrosine residue was not essential at residue 44.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys

Related Publications

B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
May 1994, Biochemistry,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
June 1998, The Journal of biological chemistry,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
September 1998, Biochemistry,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
February 1996, Journal of neurochemistry,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
June 1989, The Biochemical journal,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
September 1995, Biochemistry and molecular biology international,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
August 1985, Neurology,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
April 2014, Journal of neural transmission (Vienna, Austria : 1996),
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
June 1993, Molecular pharmacology,
B P Zhou, and D A Lewis, and S W Kwan, and T J Kirksey, and C W Abell
September 1988, Neuroscience,
Copied contents to your clipboard!