Mildly oxidized LDL induces platelet aggregation through activation of phospholipase A2. 1995

A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, University of Munich, Germany.

Native LDL and LDL oxidized under various conditions were compared in terms of their ability to activate platelets. Native LDL did not induce platelet shape change or aggregation, even at high concentrations (2 mg protein/mL). LDL was mildly oxidized with either CuSO4 (mox-LDL) or 3-(N-morpholino)sydnonimine (SIN-1-LDL). Analysis of mox-LDL and SIN-1-LDL showed a small increase of dienes (E234nm from 0.28 +/- 0.04 to 0.55 +/- 0.09, mean +/- SD) and thiobarbituric acid-reactive substance (from 0 to 10.6 +/- 1.5 nmol/mg, mean +/- SEM), no change in apo B electrophoretic mobility, and a minor (12% to 30%) decrease in polyunsaturated fatty acid content. Interestingly, this small oxidative modification of LDL dramatically changed its effect on platelets. Irreversible aggregation and secretion were induced by a threshold concentration of 0.4 mg protein/mL. In contrast, LDL thoroughly oxidized with CuSO4 (ox-LDL) did not aggregate platelets. Although mox-LDL was depleted in antioxidants (alpha- and gamma-tocopherol, alpha- and beta-carotene, and other carotenoids), incubation of mox-LDL with exogenous alpha-tocopherol did not reverse its ability to induce platelet aggregation and secretion. Preincubation of platelets with the cyclooxygenase inhibitor aspirin or the phospholipase A2 inhibitors trifluoperazine, quinacrine, 4-bromophenacyl bromide, and propranolol completely prevented platelet aggregation and secretion caused by mox-LDL or SIN-1-LDL. These results indicate that mildly oxidized LDL activates platelets through a phospholipase A2/cyclooxygenase-dependent pathway. The complete inhibition of mox-LDL-induced platelet aggregation by aspirin could contribute to its beneficial effect in cardiovascular disease.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
August 1988, Biochemical and biophysical research communications,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
October 2001, Circulation,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
January 1978, Advances in prostaglandin and thromboxane research,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
May 2000, Arteriosclerosis, thrombosis, and vascular biology,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
October 2003, FEBS letters,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
April 1997, The Journal of clinical investigation,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
December 2010, British journal of pharmacology,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
January 2013, Mediators of inflammation,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
September 2002, The Journal of biological chemistry,
A Weidtmann, and R Scheithe, and N Hrboticky, and A Pietsch, and R Lorenz, and W Siess
January 1991, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!