In vivo disposition of caffeine predicted from hepatic microsomal and hepatocyte data. 1995

K A Hayes, and B Brennan, and R Chenery, and J B Houston
Department of Pharmacy, University of Manchester, UK.

The kinetics of caffeine metabolism has been investigated in freshly isolated hepatocytes, hepatic microsomes, and in vivo in male Sprague-Dawley rats. A simple Michaelis-Menten model provides an adequate description of each of the three sets of data. There is reasonable agreement between the KM values for the three systems (56-200 microM). Vmax values for hepatocytes and microsomes show good agreement when expressed in the same units using scaling factors for hepatic cellularity and microsomal protein yield [315 and 420 nmol/min/standard rat weight (SRW), respectively]. Both values slightly exceed the in vivo-determined Vmax (190 nmol/min/SRW). Taking the Vmax/KM ratio (intrinsic clearance) as the basis for scaling, the in vitro data from both the hepatocyte (2.6 ml/min/SRW) and microsomal (2.7 ml/min/SRW) studies provide a good prediction of the in vivo total body clearance (3.4 ml/min/SRW).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

K A Hayes, and B Brennan, and R Chenery, and J B Houston
August 1995, The Journal of pharmacology and experimental therapeutics,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
February 1978, Xenobiotica; the fate of foreign compounds in biological systems,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
July 1970, Biochemical pharmacology,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
September 1988, Mutagenesis,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
January 2001, Current opinion in drug discovery & development,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
July 1985, British journal of clinical pharmacology,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
December 2000, Drug metabolism and disposition: the biological fate of chemicals,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
May 2001, Drug metabolism and disposition: the biological fate of chemicals,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
January 1975, Drug metabolism reviews,
K A Hayes, and B Brennan, and R Chenery, and J B Houston
August 2011, Environmental and molecular mutagenesis,
Copied contents to your clipboard!