[Inhibitory effects of bisphosphonates on bone resorption]. 1995

H Shinoda
Department of Pharmacology, School of Dentistry, Tohoku University, Sendai, Japan.

Bisphosphonates have a P-C-P bond instead of the P-O-P bond of inorganic pyrophosphate that makes them resistant to enzymatic degradation and gives them a high affinity for hydroxyapatite. They are potent blockers of osteoclastic bone resorption and have been successfully used to treat metabolic bone diseases that involve increased bone resorption. It is possible to synthesize a variety of bisphosphonates by substituting the hydrogen on the carbon atom. The pharmacological characteristics and activity varies greatly from compound to compound, ranging from 1 to 10,000. Some structure-activity relationships have been found, but no clear-cut one has been established yet. There is a general consensus that the inhibition of bone resorption by bisphosphonates is not caused by the inhibition of dissolution of the hydroxyapatite crystal, but is actually caused through a cellular mechanism that is not completely understood. In the present review article, the possible mode of bisphosphonate action was discussed with special reference to: (1) whether bisphosphonates inhibit the function of mature osteoclasts directly or through osteoblasts and (2) whether bisphosphonates inhibit the proliferation or differentiation of osteoclast progenitors to osteoclasts.

UI MeSH Term Description Entries
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004164 Diphosphonates Organic compounds which contain P-C-P bonds, where P stands for phosphonates or phosphonic acids. These compounds affect calcium metabolism. They inhibit ectopic calcification and slow down bone resorption and bone turnover. Technetium complexes of diphosphonates have been used successfully as bone scanning agents. Bisphosphonate,Bisphosphonates
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

H Shinoda
October 2005, Nihon rinsho. Japanese journal of clinical medicine,
H Shinoda
December 1984, Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan,
H Shinoda
January 2014, European journal of pharmacology,
H Shinoda
July 2008, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!