In vitro fusion of reticulocyte endocytic vesicles with liposomes. 1995

M Vidal, and D Hoekstra
URA 1856 CNRS, Université Montpellier II, France.

Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane where they fuse, causing the release of the apotransferrin. Due to a lack of other intracellular compartments, the endocytic vesicles can be readily isolated. In this study, we have investigated the fusogenic properties of EVs, using liposomes as target membranes. Membrane fusion was monitored by a lipid mixing assay based on the relief of fluorescence self-quenching, using octadecylrhodamine B-chloride (R18). Application of this procedure was verified and solidified by analysis of the fusion event by an independent lipid mixing assay, after in situ labeling of EVs, and by determination of the mixing of aqueous contents. We demonstrate that the endocytic vesicles are particularly prone to fuse with target membranes that contain dioleoylphosphatidylethanolamine (DOPE). Relative to DOPE, bilayers composed of phosphatidylserine or phosphatidylcholine show a reduced fusion activity with EV. The specific and strong inhibition of fusion by cyclosporin A and a peptide known to interfere with the propensity of DOPE to adopt the hexagonal HII phase suggests that the mechanism of fusion involves the ability of this lipid to readily adopt non-bilayer phases. ATP, GTP, and/or cytosol are not necessary to obtain fusion. However, trypsin treatment of the endocytic vesicles inhibits fusion, indicating the involvement of (a) protein(s) in the fusion event.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M Vidal, and D Hoekstra
February 1995, European journal of biochemistry,
M Vidal, and D Hoekstra
July 1996, Journal of cellular biochemistry,
M Vidal, and D Hoekstra
May 1993, Molecular biology of the cell,
M Vidal, and D Hoekstra
February 1989, The Journal of membrane biology,
M Vidal, and D Hoekstra
January 1989, Methods in cell biology,
M Vidal, and D Hoekstra
September 1987, Biochimica et biophysica acta,
M Vidal, and D Hoekstra
April 1995, Biochemistry and molecular biology international,
M Vidal, and D Hoekstra
March 1987, Proceedings of the National Academy of Sciences of the United States of America,
M Vidal, and D Hoekstra
January 1993, Methods in enzymology,
M Vidal, and D Hoekstra
February 1991, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!